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ABSTRACT

A mathematical representation of the opening of a crack of arbitrary shape, loaded
normally to its plane is achieved by means of a scalar integral equation involving
elastic potentials ; this approach allows in particular an estimation of the in-
fluence (compared to the case of similar geometry in a three-dimensional infinite
body) of a plane free surface normal to the crack plane. A numerical description

of the problem has also been considered ; it has enabled us to control the efficien-
cy of the method in the particular case of semi-elliptical surface cracks. The ac-
curacy of the process allows the results to fit inside the range of the most credi-
ble results computed by different authors (Raju Newman, 1979 ; Rooke Cartwright,
1976 ; Smith Sorensen, 1976) and this with a much shorter computing time (4s CPU

on CDC 7600). This is due to the fact that the method is particularly well adapted
to the crack problem. In particular, the separation of modes represents a big im-—
provement on the classic integral method.
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INTRODUCTION

The problem of linear homogeneous isotropic elasticity in regular shaped bodies is
studied with satisfactory results using current techniques such as finite element
methods or vectorial integral equations. See (Cruse 1969 ; Lachat and Watson 1976)
for the latter. Less classical shapes -like solids showing edges, angular points or
cracks- can, at the present time, be approximated only by some numerical subtili-
ties affecting the shape functions describing the elements in the immediate neigh-
bourhood of the singularity. Unfortunately, these improvements are sometimes only

a compromise and it seems a priori more satisfactory to use directly the theoreti-
cal results (Rigolot, 1978) as far as integral equations, applied to angular geo—
metries, are concerned.

Similarly, we are inclined to remove the restrictions on the use of Somigliana for-
mula and to use a very direct analytical method for plane cracks. Thus, our concern
is entirely directed to the solid displacement field in the neighbourhood of the
discontinuity. The boundaries chosen for the solid are either at infinity or
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ideally described as a plane surface free from any stress. The cracked solid pro-
blem is thus free from any interference with undesirable boundary conditions and
the attention is focused on the geometry of the crack itself. It is therefore not
surprising that the theory, thus developed, leads to an integral equation only
involving expressions linked to the cracked area. Another point of interest is the
way the modes are decoupled in the equations ; this separation will be shown clear-
ly for the problem of a crack in an infinite body and we will use it, to advantage,
to show the influence of the free surface on the opening displacement of the crack.
The singularity in the neighbourhood of the crack intersecting a plane free surface

was studied in theoretical works (Benthem, 1977,1980 ; Bazant and Estenssoro, 1979).

We will not deal with the asymptotic problem considered by these authors but only
the global aspect of the opening crack behaviour will be considered. A different
formulation of the same problem is given by Bueckner (1977).

I'. THEORETICAL POSITION OF THE PROBLEM OF PLANE CRACK IN THREE-DIMENSIONAL INFINITE
MEDIUM.

We follow in this first paragraph recent results obtained by Bui (1975, 1977). The
fundamental problem considered constitutes the basic mathematical tool which is
later used to treat the more complicated problem with interference of a free sur-
face. It is also a reference case for which in particular the stress intensity
factor associated with a point on the contour is independent of Young's modulus and
Poisson's ratio. The fact of having precise solutions for elliptical cracks adds
interest to this kind of representation since it allows comparisons to be made. We
will try to find the displacement field resulting form arbitrary loading of a
structure containing a plane crack of arbitrary shape. We propose to represent this
displacement by means of three integral equations governing the discontinuities in
the displacement when crossing over the crack.

1.1 Fundamental tensors in the linear isotropic elastic body.

Let x; (i =1, 2, 3) be the cartesian coordinates of the point x. The basis vectors
are ei. The displacement field u(x) satisfies the elastostatic equation
(1) Lu = pAu + (A + y) VWu = - £ in a domain
where A,u are the Lamé constants and f is the body force. Kupradze (1963) had in-
troduced a generalized stress vector operator PP defined as follows

)
(2) Py = (o + u) %% + Bn.Vu +an AV A u
where o,B are any real numbers satisfying the relation o + B = A +pand n the unit
vector normal to the area where the stress vector is applied. He established the
equivalent of the Betti's reciprocal relation

(3) J (u.Lv - v.Lu)dx = J (uan - anu)ds
Q kY]

w% will notice that the physical stress vector operator 1" is included in the class
P" (for @ = p and B = )).

Let the Green's tensor of the infinite elastic body, be Vs(x,y) (also identified as
Kelvin Somigliana tensor) ; the fundamental field V (x,y) satisfies from its defi-
nition

k
) L7 (x,y) = - 6(x - ye
where § is the Dirac measure concentrated at the point y as point of ®° ; the com-

ponents of tensor V% are obtained by differentiation of (4) with respect to x.
Kupradze shows that in these conditions, Somigliana's relationship can still be
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applied with " operator, which yields :

) a0y (0 = J 7,50 2P T s —utenrE PR o)) as
N
where
Sl L =2 0)
d=1/2 if x € 30 regular point

d =10 4f Vx e Qr exterior to § .
A study of elastic potentials on a non regular surface (Rigolot 1978) gives a ge—
neralization of (5) where d(x) is replaced by CJ(x)u.(x) and C% is an expression
in relation with the solid angle @ and inertia prod&ct pi :

= - - ! _ j h

Li(x) S C=9) {@ 2v) 6iQ + 3pi }
In equation (5), the term Pn(y)vk(x,y) is singular for points x on 9Q, the singu-
larity is due to the normal derivative of 1/p, so that for d = 1/2, the associated
integral must be understood in the sense of a principal value.

We restrain now the choice of P" in forcing non normal derivatives to disappear ;
the corresponding choice Py is obtained in an unique way with a particular couple
(aO,BO) ; we thus obtain the Kupradze-Bashelishvili tensor, defined by

k < ] k
6) BiGLy,nG)) = 2 P vy e
which will enable us to describe the jump in the displacement field across the
erack :

%
(7) Bk(x ,¥,0(y)) = £ 8(x - y)ek

S is here the Dirac measure in relation with a plane P with n(y) unit normal
vector.

1.2 Describing the displacement discontinuities as a sum of elastic potentials.

We express (5) in an equivalent way in considering the displacement field of the
infinite body as a sum of potentials connected with preceding tensors.

So we define a single layer potential in relation with density wk :

k
(8) Ci(x) = 2 J V. (x,y) wk(y) ds

30 Y

and a double layer potential associated with density ¢k 3

k
9) D.(x) = J B (x,y, n(y) ) ¢, (y) ds

: P e ) ds,

Description of the displacement field is presented as :

(10) ui(x) = Ci(x) + Di(x)

We will not discuss the properties of these potentials but content ourselves with

the expression of the double layer potential discontinuity across the crack sur-—
face

(1) D;(x") - D, (x) = 26, (%)

with the further statement that tEF general determination on the lower face of 3Q:

(12) Di(x—) = - ¢i(x—) + JBQ B?(x,y,n(y))¢k(y)d5y
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is considerably simplified when 3Q is a plane ; with this assumption, the princi-
pal value vanishes and the density ¢.(x) is simply equal to the displacement on

the upper face while - ¢.(x) is the isplacement of the lower ome. The doub%e layer
potential seems likely ifi a very perceptible way as describing exactly the jump ?f
displacement field whereas the single layer potential supplies the boundary condi-
tions. It can be proved -in deriving the tensions by differentiation of the poten-
tials— that these conditions are satisfied when following group of relations are
met (Bui 1975, 1977)

2
(13) 2 u? %3¢y . 992
Ya(x) = - X+3U (§§T & 5;;)
G 3 3 1 i ) ] 1
Au LN pr R e ) I, LJ—J-———ds=T
(14) 2m (A+21) JS 9y1 i Byz) 9x1 O(X,Y))dsy Do Saya Bxu(p) l(x)
I T T R _“_*Ja_‘i’_z-a——lds =T
(15) 2m (A +21) JS dy1 i Byz) 9% (D(x,Y))dsy T o g%, Bxa(p) y z(x)
WO 3 1 3 iy
(15) ﬂ(>\+2u)J53xa 5G5,y) 3y, B8y =

Relations (13) express the necessary connection between densities j; (14), (15),

(16) are the requested fundamental equations. It should be noted that mode I (16)
is entirely uncoupled from modes II and III, represented in equations (14) and (15);
integration domain is restricted to the cracked surface S as densities are elsewhe-
re zero.

2. THEORETICAL ASPECT OF THE PROBLEM OF THE EDGE-PLANE SURFACE CRACK:OPENING MODE

The plane of the crack being normal to the free surface, we extend the theory deve-
loped in the preceding paragraph in order to simulate the surface crack problem ;
the adjustement is obtained by means of a superposition of two problems of funda-
mental type corresponding to two orthogonal plane cracks. The first one refers to
the outline S of the studied crack F and its mirror image F against the plane of
the free surface (fig. 1). The second one refers to a surface Z large enough to be
interpreted as the free infinite plane surface. The superposed problem in relation
with the "crossed-cracks configuraticen" will represent in a convenient way the

Fig. 1. Crossed-cracks configuration. _
Physical crack F, mirror image F.
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pFoblem of the edge crack, providing that boundary conditions are met on F U F
(imposed normal pressure) and on I (free from any traction).

Problem } describing Fhe crack S = FU F is characterized by densities ¢3; disposed
on S. U31ng the notation of the preceding paragraph, the displacement field solu-
tion of this problem is expressed in general form as (10). We denote by o033 the

iomponent observed in the plane P of these densities : its expression is as fol-
ows

X
(17 T S (a0 Al 1 3¢
) ey.T(C + D) O Sg;; e 5;5 ds_)

P¥ob1em‘2 related to I is defined by means of densities B, disposed on Z. The
field displacement resulting from these densities is written :

(18) ui(x) = Fi(x) + Ai(x)

I' and A denote respectively single and double layer potentials similar to C and D
but related to B,. By analogy with equation (17), we can write :

E 3
i o T I i
e,. T (A + 1) =) E 8Xa 57;:;y) E;i dSy

The.superpos%tion described at the beginning of this paragraph consists in consi-
dering th field obtained by the sum of the 4 potentials originated by both kinds
of densities. By symmetry, we can derive the required boundary conditions for the
supe?pogeé problem, lack of shear stress in planes P and Il and existence of dis-—

continuities 2¢3 and 2B, on S and I respectively.

Equations for the superposed problem.

bﬁ Qonsidgr?ng‘any Point x of the crack S, we impose that external tractions Td(x)
€ in equilibrium with, for ome part, singular tractions (17) generated by densi-

ties ¢5 on S, for the other part with tensions originated b i td
the d
on ¥ and denoted by e3.T“(A AT i e

The superposition of these influences is described by the following equation :

Yx€ s X S MY
) . T I I
JTA HAATH) GO o winad
ey T (A + 1) + = Js o (o(X,y)) Sy; dSy = T5(x)

# Considering any point of the surface of discontinuity Z, we prescribe in an
analogeous way the zero-equilibrium between singular tractions resulting from

8 densities acting 1n their la and regu (o] ate densi-
ne and r lar traction y 3
2 P 2 S riginat d b ¢ )

¥ x> zZnN
21 { e 5

*
m A+l) 3
e. . T™C + D) + MO O il 138 4
2 ) * TOEID 5 0%, Sy 3y, Bgdn

These equations, where the coupling between the surfaces S and T is clearly illus-
trated, solve our problem (Bui, Putot, 1979 ; Putot, 1980).

Remarks

; n
Compact notat%ons e .? (A +T) and e .Tm(C + D) are used_for the lengthy procedu-
res followed in deriving, under the iIntegral sign with T operators, the elastic
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potentials.

The contribution 0;5(C) derived from single layer potential can be expressed as
follows

022(C)

]

ez.Tm(X)(C)

1 1 7 i
2 JS(— ALY - Zuvz’z)wl(y)dsy # 2 J (- AWV” - ZuVZ’Z)WZ(y)dSy

S

. ‘ k 5 i
It only remains to clarify Vi g with reference to the coordinate system. The con-
’

tribution 0,,(D) from double layer potential is calculated in a similar way :

ez.Tm(x)(D)
3

022 (D)

= JS(— AV.B~ - 2“32,2) ¢4 (y) dSy s

wo 3 o i ’ ‘
Here it is necessary to develop Bi 55 Analogeous quantities in connection with T
>

and A are developed in a similar way.
3. NUMERICAL PART

3.1 Generalities

We only used the integral equations (20) and (21) with mere collocation without
for the present time the help of some more competitive numerical techniques
(Nedelec, 1977). Equation (16) solving the crack problem in a three-dimensional
infinite material is easily shown to express itself as a linear system :

(24) A = T

where ¢ is a vector of unknown components ®; at the different modes of the mesh ;
A is a full matrix, non symmetrical in this case. The systems expressing equations
(20) and (21) of the surface crack problem can be written as follows

A® + BB T

1]

(25)

Cd + DB 0

where A, B, C, D are matrices linked to applications of sets shown in the fol-
lowing diagram ;

® and B are vectors, their dimension being the number of nodes associated to S
for the former, £ for the latter (nS and nE).

Notation (n, , nz) indicates the number of lines and columns of the associated
rectangular matrix :

matrix A
s B s LE e Gl
s’'s s
matrix B
I — T B
. P (nsng) (nE@l)
matrix C
S g3 0] c ]
(ngyn ) (n_,1)
s s
5 matrix D = 8

(nz?nz) (n. ?1)
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Exchanges can be summed up on the following diagram :

matrix C
S S b
o} matrix B §
matrix A matrix D

Square matrices A and D describing the singular part can be inverted and equation
(25) written in the equivalent form :

(26) (s BT Clh vyl

l : =1
showing clearly the perturbation BD C of the system (24) induced by the presence
of the free surface.

It must be noticed that BUECKNER's formulation (1977) leads to a crack opening
equation equivalent to (26).

3.2 Some remarks on "singular computation"

Computing matrices A and D require an integration in the sense of Cauchy's princi-
pal value ; we have chosen to adjust, by the method of least squares, the best
fitting surface (generated by a straight line) containing the values ¢ and B which
are assumed to be known at the different nodes of the polygone Q in the immediate
neighbourhood of the pole. This procedure is a real improvement when compared to
the numerical technique used in Bui (1977).

This method allows us to separate the partial stiffnesses due to the term I of the
sum in (27). Putot's work (1980) will be referred to for more details.

3 | 30
27 j S e i gt e il
5 B (p(x,y)) aya y ek

E 3
(28) T J 200 B0

qQ 0,y v
(29) I = J _Elll_.dg = J LGN ds

P-Q 0% (x,y) 7 s-9 p¥(x,y) 7

ds
(30) K= - ¢(x J Y
P-Q pXx,y)

J requires a classical type of calculation (same kind as with the regular matrices
B and C) with an integration by Gaussian points successively in all the elements
without the pole x ; we chose a parabolic isoparametric interpolation. K is direct-—
ly linked to the diagonal stiffness associated to node x ; its integration is easy.
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4. RESULTS AND CONCLUSIONS

We have been interested to test the computer program for elliptical (infinite
medium) and semi-elliptical (edge) cracks. Equation (16) gives us the analytical
solution to the former. The latter is treated in a large number of references,
which are not always in complete agreement. Since boundary conditions are not iderr
tical in all the references, comparison of results is delicate. The procedure adop-
ted consists in examining firstly the characteristics of the opening of elliptical
cracks in an infinite medium (system 24) and to compare this with analytical re-
sults. A section normal to the crack front at a point M is compared with these
opening profiles, on figure 2 : whereas the maximum opening agrees within 1 Z,
elsewhere a systematic under-estimate, resulting from the excessive rigidity of the
mesh near the crack contour, can be noted.

This has an effect on the determination of the local stress intensity factor dedu-
ced from results for nodes near the contour. In the worst case this can reach 10 Z.
We have made use of these observations and assumed that the same under-estimate
must be present for edge cracks. Results have been obtained (for uniform tension)
which agree well (figures 3a, 3b) with the points calculated in the references,
which we consider to be most reliable. One advantage of the program is its very
short time of execution (4 sec. C.P. on a C.D.C 7600). The mesh used is shown on
fig. 4. It consists of 37 nodes for F, 61 nodes for Z*. We have also calculated
crack openings resulting from polynomial type loads. The resulting diagrams are
given in the figures 5.

We have also begun to examine the influence of Poisson's ratio on crack opening in
the presence of a free surface. (This influence is null for an infinite medium).
Our approach has been similar to that of Bazant, 1979, who, for a stabilised crack,
has attempted to relate Poisson's ratio to the angle, between the tangent to the
crack contour and the free surface, at their intersection.

In practice, we have deformed the network of the semi-elliptical crack, in order

to subject it to a non-normal incidence. We have also sought to assure a

constant stress intensity factor in the neighbourhood of the surface (which carries
the hypothesis of continuity near the surface suggested by Bazant and Estenssoro

in an asymptotic manner).

A crack

analytical opening

axis of
symmetry

gl
“distance

Fig. 2. Comparison between analytical and
numerical solutions.
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The relationship found between the angle of incidence and Poisson's ratio, is of
the correct order of magnitude although the mesh is probably insufficiently dense
to allow a true comparison. However this question does not, in our opinion, merit
a very detailed study, since the assumption of continuity at the point of inter-
section with the free surface is not really justified. Thus there is some uncer-—
tainty about the asymptotic value of the angle of incidence. In other words, the

values found using the above assumptions are approximately justified near the
free surface, but not too near !

A fairly large field of studies of different

; geometrical configurations remains
to be carried out

; research concerning iso-Kp cracks, studies of neighbouring
surface cracks using the numerical technique of sub-structuration, studies of
cracks of quite different shape to semi-ellipses. It should be noted that practi-
cal surface cracks encountered in industry are rarely semi-elliptical.

Stress-intensity 4 Stress—intensity

O Raju, Newman
4 Rooke, Cartwright

-5 r x Smith, Sorensen
r H H
' a/b=1 ‘ R arb=6
[ S angle ¢ r S angle ¢
e L e

Fig. 3a,b. Numerical results for semi-elliptical cracks.
Normalized stress—intensity factor
KI¢0/(U/Wa), with ¢g(a/b) complete elliptical
integral of the second kind.

Fig. 4. Mesh for semi-elliptical crack and free surface.
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Fig. 5. Crack opening under different loading conditions.
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