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USE OF THE CALCULATION OF INTEGRAL J,

R. L. Roche*

INTRODUCTION

The method of finite elements applied to the analysis of stresses and
strains is of major interest in fracture mechanics. In particular, cal-
culation of the integral J; or similar integrals by these methods leads

to useful applications. Two types of application are presented here, one
for the fast, relatively low cost determination of K; in linear elastic
fracture mechanics, and the second for the examination of certain condi-
tions of validity of initiation criteria based of J for an elastic plastic
material. These applications are illustrated for a number of calculation
results obtained by means of the CEASEMT system developed at Saclay [1-2].

DETERMINATION OF KI IN LEFM

A number of different methods are available to determine K by means of

a calculation program by finite elements [3-4]. Most of these involve
determination of certain values (displacement, stress, etc...) as a functior
of distance from the crack front (polar radius). Hence these are actually
derivation methods. Consequently, they require a fine mesh and are there-
fore costly. This explains why they are rarely employed for industrial
calculations.

Methods possessing an integration character are far more preferable.
Furthermore, the method of finite elements gives better results on over-
all values such as energy, than on the detailed distriubtion of strains

or stresses. The integral J) hence appears more suitable for the determin-
ation of Ky since it is a curvilinear integral resulting from an integra-
tion in the entire plane region enclosed by the integration path.

Calculations performed with the CEASEMT system showed that this method is,
technically, fairly accurate and inexpensive. The PASTEL module enables
calculation of Jp simultaneously on several contours. '

A simple example is provided by the results obtained for a square plate
exhibiting a crack whose length 2a is 1/4 of the side, subjected to a
uniform tensile stress S on the sides parallel to the crack. The table
one gives the reduced value F of Ky = FSyTa, the deviation in relation

to known values [5] and the total cost of the calculation expressed in
equivalent seconds of an IBM 360/91 computer for the different meshes
employed. For reasons of symmetry, the calculation only covers a quarter
of the plate. Some of these meshes are shown in Figure 1.
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It can be seen that satisfactory accuracy (2%) is achieved for loy calcula-
tion cost. Moreover, the mesh is obtained automatically and requires very
little labor.

This method is obviously limited to the area of validity of J, (homogeneity
of the material, flatness of the crack). However, it is su;table for deal-
ing with certain interesting cases, such as pseudo-cracks without sharp
fronts.

As an example, a pseudo-crack with a thickness of 0.1 mm located at thg
center of a beam bent at three points was subjected to calculations (Figure
2). By definition, the reduced stress intensity factor is equal to:

" EJ (1)

1 -v)ra

(M
(I

Where S is the reference stress (in this case equal to the maximum bending
stress of the uncracked part) and J is calculated on four contours surround-
ing the entire crack front.

am) | 0.2 | o5 |

1
FJ | 1.046 l 1.016 ] 0.998

2
0.959

The standard deviation on the four contours is always less than 0.010. As
for the calculation cost, it is less than 50 equivalent seconds for each
case.

This method may be extended to three-dimensional cases, by calculation of
the vectorial integral J on different surfaces enclosing the elements of
the crack tip. Another development under way at Cadarache deals with
thin shells, using both the integral J and the integral L of Knowles and
Sternberg [6].

VALIDITY CONDITIONS OF THE CRITERION JC

The integral J is employed as a crack propagatign initiatiQn criterion [7].
Two arguments may be employed to justify this view. The fl?st relates to
the energy available during crack propagatiop. The second 1s‘ba§ed on the
property of independence of the contour, making J a Fha?acterlstlc of the
crack front (like K; in LEMF). For both arguments, it is necessary for J
to be path-independent.

It has been shown that J is independent of the contour for non-linea?
elastic materials. It was suggested to extend this property to plastic
materials by using the '"strain energy' W, namely, the dgn51ty of work
received [8]. However, the validity of this extension is debatable.

A necessary condition for J to be independent of the contour may be written
[9]. A defect vector Wi * is defined, with a volume density of:

= _ (2)
et = Wah = BB g
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Where:
ij
W =“/ﬂ 0..de, .
o ij Tij

W,1 is the derivative with respect to X ) .
k P k

The surface and linear densities are similarly defined. This vector is
null when the spatial variation in '"strain energy'" dW is equal to that
which would result from the spatial variation in "strain", in other words:

dw = 0. .de. .
1) 1)

Applied to the surface of the body are the surface defect vectors W**

which, when no loads are applied, are equal to Wn (n normal to the surface).

It can easily be shown that the overall defect vectors applied have a null
resultant (Figure 3).

It is easy to show that integrals J1 and L; are the resultants of the de-
fect vectors located in the volume V bounded by the integration surface:

> >
J= J, Wrdv (3)

/;, (OM A W*) dv (4)

The conditions of independence of J and L are hence reduced to W*k = 0.

In the plane case of a plane crack parallel to axis Ox (tip perpendicular
to Oxy), the condition for Ji(component of J along x) to be independent of
the contour is hence W*, = 0, or:

[l'3

it

W %€ 5
ax 0ij 9Ix (5)

This condition does not require the use of the constitutive equation of
the material.

A sufficient but not necessary condition may be suggested for materials
with potential mechanical energy W. It is sufficient for W not to depend

explicitly on the point in question, but only on the state of strain €ij
(the material must be homogeneous).

This condition may be applied to non-linear elastic materials. [t may
also be applied to materials exhibiting deformation type plasticity. In
effect, if unloading were not to occur, a relationship would exist in

finite terms between strains and stresses, introducing a mechanical poten-
tial.

Unfortunately, the plastic behavior of materials is rather of the incre-

mental type, and no mechanical energy potential exists. Consequently, it
is not certain that J is independent of the contour, and that a criterion
based on J is entirely valid [10].
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NUMERICAL STUDIES OF THE INDEPENDENCE OF J

Calculation results obtained with the
ing an incremental plasticity model,

method of finite elements, employ-
can serve to evaluate the independence

of J. Consequently, in the special cases calculated, it is possible to
appreciate the validfty of a criterion based on the value of J. Such cal-
culations have been performed [11] in a number of cases. It does not appear

that highly significant variations of J with the contour occur. Moreover,
it is difficult to establish whether the variations observed are real oT
due to numerical appearances. However, some authors [12] believe that

J is not path-dependent when the path crosses plastic zones.

A number of calculations of this type were performed with the CEASEMT
system. The plasticity model employed was that of Von Mises normal flow
and law (Prandtl-Reuss equations) [13].

The above plate (2 x 2 mm square with crack 2a = 0.5 mm) was analyzed

(plane strain) (E = 206,800 MPa - V

=0

.3 - 0, = 310 Pa). The load S

consisted of a tensile force applied progress%vely to the sides parallel
to the crack. The quarter plate mesh is represented in Figure 4. Figure

5 shows the variation of Fj with S
and a material of which the tangent

For each of the 15 increasing value

calculated, together with the portion

to plastic energy Jp and that due t
Jg. Table 2 gives, as an example,

for

a material without strain hardening,

modulus is 1/10 of the Young's modulus.

s of stress S, over 20 contours, J was

due to elastic energy Je, that due

o the forces on the integration contour

the

results obtained for S = 260 MPa.

It may be noted that J depends only slightly on the contour (unit N/m)

despite a very broad plastic zone.

It should be observed that in all the cases dealt with, the loading was
radial, in other words, all the forces applied increased proportionally.
This procedure makes it possible to consider the behavior of the test

sample like that of a material with deformation type plasticity. It is

also interesting to analyse other types
with the foregoing results. 1In effect,

of loading and to compare them
significant changes in strain

may occur at certain points, and possibly local recovery in the elastic
strain region. Analyses of this type are under way at Saclay on the
plate previously investigated. Instead of increasing the applied stress

S uniformly, it is progressively esta

blished at a selected value Sq»

starting, for example, with the corners and moving towards the center of
the side (Figure 6). Initial results obtained appear to differ from those

obtained for radial loading up to S,.

Consequently, calculations of J by the method of finite elements can serve
to clarify the independence of the latter for material behavior which is
but incremental plasticity and visco-

not of deformation type plasticity,

plasticity. They also make it possi

ble to evaluate the effect of the load-

ing procedure which, in actual structures, is not always of the radial

type, but may be more complex.
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Table I
Mesh nodes elements F deviation cost
A 25 32 0.855 - 17%
B 81 128 0.962 - 8% 53
C 137 232 0.974 - 5% 61
D 289 512 1.009 - 2% 71
E 1089 2048 1.034 + 0.3% 354
Table II
PATH JE JP JF J FJ
El 26,33 235,57 249,42 511,32 1,479
E2 64,16 254,82 164,28 483,27 1,438
E3 72,76 308,19 108,31 489,27 1,447
E4 79,89 344,34 67,84 492,08 1,451
E5 87,70 300,01 102,69 490, 40 1,448
E6 94,06 323,14 74,53 491,74 1,450
E7 100,09 336,24 56,41 492,76 1,452
E8 105,82 341,10 46,45 493,38 1,453
E9 111,39 341,10 41,26 493,77 1,453
ElO 140, 33 304,81 49,72 494,87 1,455
Ell 171,86 271,49 53,25 496,61 1,458
El12 187,65 239,72 70,52 497,90 1,459
E13 203,93 179,33 116,81 500,08 1,463
El4 229,70 121,94 149,89 501,55 1,465
EI5 236,29 69,80 196,16 502,26 1,466
E16 233,83 27,37 242,47 502,68 1,466
E17 206,94 0 296,11 503,06 1,467
E18 155,23 0 348,01 503,24 1,467
E19 127,17 0 375,99 503,16 1,467
E20 120,51 0 382,58 503,10 1,467
J unit N/m
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Figure 3 Defect vectors along a crack
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Figure 4 Mesh used for plastic computation Figure 6  Non proportional loading process
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