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151 OF THE WEIGHT FUNCTION CONCEPT AND THE CRACK CLOSING METHOD FOR
CALCULATING STRESS INTENSITY FACTORS IN PLANE OR AXISYMMETRIC PROBLEMS

J. Heliot* and J. Vagner**

INTRODUCTION

it is becoming increasingly necessary to use linear elastic fracture

sechanics and stress intensity factor calculations in engineering. This
paper explains why the weight function concept and the crack closing
method have been selected to perform these calculations. Description is

1150 given of the methods used in the calculations, in cases where the
shape of the cracked structure and the loading pertains to plane or axi-
symmetric problems. Relevant practical experience is summarized.

DEFINITION OF WELGHT FUNCTIONS

'he weight function concept was introduced by Bueckner [1, 2] in relation
to a calculation method based on boundary integral equations. The concept
is a specific application of Betti's theorem to the singular stressfield
in the crack tip vicinity. Other expressions based on this concept have
been given by Rice [3]. Applications of the weight function concept and
of the finite element method have been studied by Labbens, Pellissier-
{anon and Heliot [4] and Paris and McMeeking [5].

For a crack subjected to a mode I pressure 0(x), the stress intensity
factor can be calculated when the weight function m(x/a,a/B) is known for
the crack geometry [4]:
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In the case of a circumferential crack in a hollow cylinder with an inside

radius Ri:
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See Figure 1.
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CRACK CLOSING METHOD FOR CALCULATION OF STRESS INTENSITY FACT
b UL Oh < 208 NTENST ? AN
SLIGHT FUNCTIONS [Y FACTORS AND

\ 5LVEN structure with a crack subjected to a pressure o(x) is represented
by a flnlte element mesh with a rather long crack (Figure 2). The struyc-
ture 1s computed by a finite element method, where th; pressure 5(() isL
rgplqgeq by a series of forces applied to the crack nod;s f; F . F .
[Qe finite element calculation yields in particular the cracé opening
qlsg}acemept (Uy, Us.... Uy) at these points. [ he finite element\crack
;ontlguyatlon, the displacements Ui are called U?OE and are calculated
successively using n loadings correspondi?g)to nlunit forces Fq indlvidually
0
1]

Il =

considered, in order to obtain a matrix C such that:

(o) _ (o)
E i i (3)

'he structure strain energy is:

VLD) 1 §on nvn (o). .
v = Ly ooy ety g (4)
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ync crack is rgqu;red to close over a length equal to the length of the

Last element Qt the crack. For that purpose, the force F_. jis calculated

as runcﬁ{gn of Fy (i =1, n - 1) by setting Uy = 0. The Hisplacoments U;

are modified and they become U(1) such as: .
i

L) ()L
di = C..°F

- atvig cCil., -
fhe matrix Li- can bg calculated from L};) by using a Gaussian elimination.
\ new strain energy is then determined:

ZV(IJ = % El.l-lU.(l’ll? = L T?-l?n—lct})fr §
2 =171 i 2 C“i=1%j=1 ij i

An expression for G or K is derived from the above expressions for W:

c_dw w0 () :
G = —~ 21 ~N ¢ = = -
A A & \/1-u2 G (5)

Ihe culgulation can be continue% ?y gradually closing the crack until the
lengph 15 zero and, using the Ciq matrix, K can be determined for any
crnc5 length and any pressure o(Xx). The method can be used also when'the
load}pg 1s not applied to the crack, but to the whole cracked structure.
In this case, the Fi forces are the forces which must be applied to shut

the crack completely. Ip particular, if the loading is simply a local
force Foo =1
(0) (1)
1w 1 (“.“L‘
c= 49 1 Ty rr
T dA (0)
vence the weight functions are deduced, as described in [4]. From a single
tnite clement calculation, it is theoretically possible to calculate the

tx/a,a/B) function in a range such as 0 < x/a < I, 0 < a/B <1 The
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method was used with 300 nodes and 30 loadings requiring 30 seconds on a
liarge computer, such as the CDC/ 7600

\WCCURACY OF WEIGHT FUNCTION CALCULATION

lhe calculation of m(x/a,a/B) using the method described above is very
fvcurate when the length (x-a) is not too small, and corresponds at least
to the width of two elements of the mesh (when using elements with 12
degrees or more of freedom). Labbens [4] has shown, that knowing the limit
vilue of m which is 1 when x/a tends to 1 [1, 2, 3], m could be readily
detined by interpolation or by fitting in the vicinity of x/a = 1. Good
tpproximations of m are thus obtained for any x when for example 0.06 <

/B < 0.94; m remains to be determined for low values of a/B. The fol-

lowing observation is used for this purpose.

When a/b > 0, the weight functions of any structure arc those of a single
cdge crack in a semi-infinite strip. These weight functions have been
cialculated by Bueckner [2]:

m{i,u} =1+ 0.0147{1- 5}+ 0.2502{1— \—} (
la a a

~J
—

50 1t is possible to accurately compute the weight ftunctions with respect
to a given geometry in the range:

X a
0< =<1 0 < =<0.94
— a — hB*
A computer programme was set up using the method prescnted in section 3
in the most general case, and these observations where taken into account

to improve the accuracy of the calculations. The comparisons made between
the results obtained for a single edge-cracked strip and those of Bueckner
[2] show that the maximum deviation is 45%.

CALCULATION OF STRESS INTENSITY FACTORS USING WEIGHT FUNCTIONS

For a given stress distribution 0(x) and a given crack length a, the
corresponding value of K can be calculated by two ditterent methods:

a) by directly applying formula (1) or (2)

b) the crack closing method can be directly applicd to the stress distri-
bution o(x).

Method b) is approximately equivalent to determining K with weight func-

tions, calculated by a finite element programme without correction tor

the real limit of m(x/a,a/B) when x - a. Method 4) uses the corrected

weight functions. In practice, both methods yiceld the same results for

relatively long cracks a/B > 0.3, but method a4) is more accurate for small

cracks, which is not surprising. See specific comparison made in Figure

3.
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CALCULATION OF K USING A POLYNOMIAL FITTED PRESSURE

In many cases, the 0(x) pressure can be approximated by a polynomial, as
performed by Buchalet and Bamford [6] or Raoul and Vagner [7]

2 m
X X X
J(x) = Jo+{§}61+{g} P2 s svenus e *{%} T (8)
— a) Ja a al" al
vith ;& = V7 oo [ofgheglon 1iffhe A5t on tall] -
a ”
S ake
: [2 = gt

and ii{é}: %‘/; / {g} el dx (10)

- ’ o va-x
i. can be accurately calculated by using method a) and (10). For that
]

purpose, a polynomial approximation of m is determined and the value of
1; can be calculated exactly or by using an appropriate numerical method.
[he limit values of i;(a/B) when a/B - 0 are the same for all cracks in

111 structures, as the limit situation, when a becomes small compared to
B and to the radius of curvature of the surface of the body, is that of a

crack in a semi infinite halt plane.

These limit values can be calculated using (10) and (7)

Limit values of i; when a/B = 0

] 0.440 0.389

|
|
[ i W) 1.12 | 0.087 | 0.528

Curves giving 1, tor several geometrical configurations have been plotted

in Figure 3. They indicate that ig(a/B) is strongly dependent on the
geometry. Curves have been plotted in Figures 4 and 5, giving i)ln/B),
(j = 0,3) for circumferential and axial cracks in cylinders.
CONCLUSIONS

In two-dimensional problems, the crack closing method permits determination
of K for several crack dimensions with only one finite element calculation.

The m weight function can thus be determined for a given geometry by a

single finite element calculation. This is inexpensive and yields the

welght functions for any crack length. Having the functions m, K can be

letermined under arbitrary loading by calculating a simple integral ex-
ression.  The use of fitted weight functions improves the accuracy of the
tlculation of K.

' practical purposes, when the variation of the normal stress distribu-
ton along the path ot crack can be expressed as a polynomial, it is

nvenient to use influence functions calculated by integrating tor cach
drit o power term of the polynomial.
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Figure 4 Values of i; (j = 0.3) Circumferentially Cracked Cylinder and
Single Edge=Cracked Strip
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Figure 5 Values of i; (j = 0.3) Axially Cracked Long Cylinder and
Single Edge-Cracked Strip
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