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CRACK-TIP STRESS ANALYSIS FROM FIELD VALUES
OF THE DISPLACEMENTS USING COMPLEMENTARY ENERGY

J. L. Swedlowl, M. E. Karabin, Jr.! and G. E. Maddux?

A variety of techniques is now available for crack-tip stress analysis,
and the need for further development along these lines may not at first
be evident. For some circumstances, however, none of the present method:s
is especially applicable so that we have been moved to develop another
approach. Concern here derives from having an experimental determination
of displacements at points surrounding a crack's tip at the outset; the
objective is to find the corresponding stress intensity factor(s). Such
measurements are conveniently made at modest distances (a few cm) from
the crack's tip; in the tip's immediate vicinity, however, experimental
accuracy may be impeded by localized plastic flow; surface roughening,
and dimpling. Objections to use of established analytical/numerical
methods arise owing to indeterminacy of loads or overall structural
complexity. We seek therefore to determine stress intensity factor(s)
from in situ displacement data at points along a path or surface that
surrounds the crack's tip but interior to the Structure in which the crack
is found.

To this end, 7n situ displacement data are taken to pertain to the dif-
ference between two excitation levels, one nominally at rest and the
other at load. This pairing is required by whatever experimental method
is employed; the analysis proceeds in terms of the net difference and
gives either increment(s) in stress intensity factor(s) or total value(s)
where the at-rest state is wholly unloaded.

The primary ingredients required are the theorem of minimum complementary
energy and a stress function pertinent to a crack. The theorem states
that, of all equilibrated stress fields which satisfy prescribed traction
boundary conditions (here, the crack's flanks are stress free), the
"actual' one is distinguished by a stationary (here, minimum) value of
the complementary energy V*, where

V* = fw*(o..)dD -f i, t.ds (1)
ij 5 11
u

D

In (1), integration proceeds over the domain D and that part Sy of its
total boundary S where displacements are prescribed; uj are, the prescribed
displacements and ti the corresponding tractions, 0ij is the stress
tensor, and W* is the complementary energy density given by

w*(aij) = [—v(akk)z + (1 + v)oijoji]/ZE (2)
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for isotropic, Hookean material. (The usual indicial conventions are
employed.) Anisotropic, elastic material is treated by suitable alter-
ation of (2) and (3), below. While a fuller account of this theorem may
be foupd in a good text, e.g., [1], our purpose is satisfied by the
variational requirement SV* = .

The appropriate stress function for isotropic planar bodies is due to
Williams [2] and is written as

= 2 -
X(r,8) = m;{(-l)’“ L [-cos(m—S/Z)e . ;‘Lf;; cos(m+1/2)6]
+ (-l)m'lem_lrm+1/2[sin(m-s/z)e - sin(m+1/2)6]

(3)
+ (-l)maZmrm+l[-cos(m-1)6 + cos(m+1)8]

+ (-l)memrm+l[-sin(m-l)e + $:i sin(m+l)9]}

where (r,6) are coordinates centred at the crack's tip in the usual manner.

Xx(r,0) satisfies equilibrium by definition and the traction conditions on
the crack's flanks by construction. The stresses are

S11 T O = QX o+ (U/TX g 022 > oy = -

J12 > Tg =" Bl/r)x’e],r 023 =+ Tgy = 0 4)

a > T =0 e
13 Tz O33 Gz

and 0, is gither null or given by v(o, + Og) in isotropic plane stress or
plane strain, respectively. The stresses of interest are assembled in the
form

o = {o} = [s(r,0)]{a}

ro

where [S] is a matrix whose entries depend solely on position as found by
inserting (3) into (4), and

T
{a} = {alb]azbzaabgaubq...azm_lbzm_lazmbzm}

Thus the entries in {a} appear in sets of four so that truncation of (3)
at m = M gives 4M coefficients to be found.

Using G for the shear modulus and K for the usual function of Poisson's

ratio in planar isotropic elasticity, the compliance matrix [C] is
written
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K+1 k-3 0
8G[C] =|k -3 k+1 0
0 0 8

and (2) is put into the familiar quadratic form
T.pea T
W* = (1/2){a} [s] [c][S]{a}

Typically, the displacement data ﬁi will be resolved in orthogonal dir-
ections pertinent to the overall structure, or to the crack's position.
Tractions tj must be resolved in the same manner as uj. Denoting these
directions as (&,n) we write

t

u
&l = {t} = [f(r,e) S ]{a} and ’~£; = {u}
n “ i

Note that {t} is computed from (3) and (4) via Cauchy's formula and, per-
haps, Mohr's circle, and that [T] is evaluated along Sy only.

t

With the foregoing representations (1) becomes

ve = (1/2){a}T[x]{a} - (v}T{a} (5)

in which

[X] =_/ﬁ [S]T[C][S]dD, 37 - J[ @7 [ryas (&)
D S
u

Minimization of V* leads to
[X]{a} = {v} (7)

as the algebraic problem statement®. Note that the problem's size is 4M
irrespective of the number of data points on Sy. We must, however, carry
through the quadratures in (6).

Code for this purpose has been devised. For a number of test problems
considered, it was observed that {u} does not vary rapidly along Sy but
that the entries in [T] can. Hence a limited amount of data in {u} is
interpolated so that {Y} is determined by a large number of points using
Simpson's one-third rule. To determine [X], however, a more elaborate
tactic is needed. The interval -m < 6 < T is divided into a dozen
sectors, and Gaussian quadrature (using ten points radially and circum-
ferentially) is employed in each sector. Size of the sectors is not
necessarily uniform; we have dealt with rectangular paths S, and let the
corners and mid-points determine actual positions, as in Figure 1.

Accuracy of~the quadrature used to find {Y} is essential so that any rigid
motion in {u} does not affect the result. We have observed that, by
adding an arbitrary (and large) rigid motion to a given set of "active"

TThis is the complement to the approach outlined in [3] for which traction
boundary conditions on S are appropriate.
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data {u}, a small change in {Y} could be produced. For this reason, an
intuitive scheme has been devised whereby this effect is made negligible.
Letting £ = r cos 6, n = r sin 0, we construct a new set of displacements,

al = u,. + - w
u ug uO n

-

u'' = U+ v +w
n n o ¢

and the quantity
' = -4! sin 6 + U' cos O
v g n
=V -u_sin 6 +v_ cos 6 + wr
o o

Summing the data along S, and setting Zﬁg ='Iu, = IV = 0 to approximate
the notion of no crack-tip movement gives three equations whose solution
is an estimate of ugy, vy, and w. The original {U} is then recovered. It
was found that, where rigid motion is large relative to the active dis-
placements, this scheme virtually negates the rigid motion. For rigid
motion of the same magnitude as the active displacements, however, the
scheme loses some accuracy. Owing to the care involved in quadrature
along Sy, the net effect is negligible in terms of the solution {a}.
Hence, while we cannot rigorously account for rigid motion, we have found
means for negating its influence.

Some of our test problems give a sense of performance. We have determined

first, ‘that Sy 1is best taken as approximately equilateral and, second,
that the crack's tip should be near the middle of the domain. Under

these conditions, two additional test problems were solved. In the first,

Sy was rectangular and oriented such that its edges were parallel and

normal to the crack's plane; {i} was determined by computing displacements

from the series [3], having assumed that

a, = -1.0 x w2 g = 1,8 (8)

and that all other coefficients are null. In the second problem, a sim-
ilar path S, was rotated clockwise 45 deg and the non-zero coefficients
were taken to be

1-i 1-i

a; = -1.0 x 10 b, = 1.0 x 10 i=1,8 9

(except thatT b, = 0), to obtain a more complicated set of displacements.
Using these two data sets at 121 points along S,, as input, solutions to
(7) were obtained as shown in Tables 1 and 2. These coefficients were
then used to compute displacements and stresses on Sy; agreement with
values derived from (8) and (9) was within 0.013 percent of their re-
spective maximum values.

TClose examination of the bz term in (1) shows that it does not affect
stress. In fact, b2 is proportional to a rigid rotation, just as ay and
by - were they to appear - denote rigid translations. The code automat-
ically sets b, to zero.

106

Part V - Analysis and Mechanics

Other problems used to test the procedure were taken from earlier finite
element results (in the elastic range) where stress intensity was known
to within a few percent. That is, although highly reliable displacement
data could be obtained, there is a modest uncertainty in the value of
stress intensity based on the finite element data itself. Nonetheless
the present method determined values of stress intensity within the un-
certainty band (nominally 5 percent). It should be noted, however, that
we found it advisable to interpolate the initial values of {u} to provide
data at 120 to 160 nearly equispaced points on Su, and that M = 7 was
required to achieve this result. The associated CPU time (1108, Exec 2)
was about twenty seconds per case, with only modest storage requirements.
Thus the procedure appears to be workable and to meet the needs stated
at the outset. Moreover, this procedure provides vastly more resolution
in the stress and displacement variation near the crack's tip than is
usually obtained from finite element analyses.

With this procedure in hand, it is useful to employ speckle photography to
measure the displacement data {i}. This procedure has been developed
[4,5] specifically to make in situ observations and may briefly be out-
lined. The diffuse surface of an object and its associated speckle pat-

If the object is deformed, a new random variation can be recorded which,
if superimposed upon the variation corresponding to the undeformed con-
dition will result in a set of "'speckle pairs" that can be related to the
vector displacement field describing the deformation. If an unexpanded
beam from a laser is passed through the developed image in the plate, a
circular halo of light with a pattern of parallel fringes similar to
Young's Fringes is observed. The distance between these fringes can be
related to the displacement which occurred on the test specimen. By
moving the laser beam around the image, a displacement field can be cal-
culated.

At this point, the coupling of the two techniques is in progress, and
additional results should be reported soon. It is clear from preliminary
work, however, that the effort is highly interactive: refinement of the
computational procedure has been stimulated by the character of actual
displacement data, and the orientation and shape of the path followed by
the interrogating laser have been adjusted to meet computational require-
ments. On this basis an overall procedure for extracting stress intensity
value(s) from in situ observations is established.

ACKNOWLEDGEMENT
This work is proceeding with the support of the United States Air Force
Flight Dynamics Laboratory and Carnegie-Mellon University, for which we
are grateful.
REFERENCES

1. FUNG, Y. C., "Foundations of Solid Mechanics'", Prentice-Hall,

Englewood Cliffs, 1965, Chapter 10.
2, WILLIAMS, M. L., Journal of Applied Mechanics, 24, 1957, 109-114.

107




Fracture 1977, Volume 3 Part V - Analysis and Mechanics

3. EWING, P. D., SWEDLOW, J. L. and WILLIAMS, J. G., International Table 2 Known Coefficients and Computed Values (Crack at 45 Deg)
Journal of Fracture, 12, 1976, 85-93.
4. ADAMS, F. D. and MADDUX, G. E., '"On Speckle Diffraction Interfero-
. . ; s
¥§E;§-fg§ Measuring Whole Field Displacements and Strains , AFFDL i a (known) 2 (computed) bi (known) bi (computed)
5. ADAMS, F. D. and MADDUX, G. E., "Dual Plate Speckle Photography”,
AFFDL TR-75-57-FBR. 1 -1.0 -0.99998467 1.0 0.99999324
2 -0.1 -0.10008076 0.0 0.0
3 -0.01 -0.00987082 0.01 0.00999148
4 -0.001 -0.00098246 0.001 0.00100222
5 -0.0001 -0.00004756 0.0001 -0.00008448
6 -0.00001 0.00003787 0.00001 -0.00001321
7 -0.000001 -0.00003930 0.000001 -0.00002506
8 -0.0000001 -0.00000196 0.0000001 0.00002333
Sy
10 9
11 8
7
12
b ‘
Ar’ 1 ‘“N 6
HRERN
Table 1 Known Coefficients and Computed Values > h\Q%\
| \
3 H\\i%‘\s
oy AR
i',l \l‘ \\ \\\ \\\\\\\\\
. \
i a; (known) a; (computed) bi (known) bi (computed) " I \\O:“A
\
E:\\\\\\
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3 -0.01 -0.00995341 0.0 0.00000010
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