Dislocations and Cracks
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We consider the advance of a crack tip in a direction continuing

the line of the crack in terms of the crack extension force, a con-

cept first introduced by Irwin.(l) Let unit length of a crack tip

move from § to £ + 8£ and let 6EEL and GEPOT be the changes in the
elastic energy of the body and the potential energy of the loading
system. Then, if GETOT = GEEL + 65P0T, the crack extension force G

is
e = -2 (1)

Draw a surface I round the crack tip and regard the surroundings of I
as the loading system; the energy -GEPOT entering I from its sur-
roundings is the sum of GSEL, which is stored, and GSE, which is
available at the tip to drive the crack. In an elastic body we
regard the crack tip as an elastic singularity or inhomogeneity, or
we represent the crack itself as an array of crack dislccations.(z'a)
Thus we need the force on an elastic singularity, the general theory
of which was developed in 1951 by Eshelby, using the elastic energy-
(4)

momentum tensor. If all sources of internal stress and inhomoge-

neities within a surface I are displaced by 662 then - 6CTOT = FQGE2

where -
B %’ Pys €8s (2)
and Plj = W ng Y g Pyj (3)

ng is the spatial part of the elastic energy-momentum tensor, W is
the elastic energy density, pij the stress, and uy the displacement;
the comma denotes differentiation with respect to z - Since

sz i = O the integral is independent of the form of I, provided the
3

zingularities remain inside it. For a crack along the oy axis GGEI
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is the net energy available, -GETOT, when we make a small cut at the

tip to extend it 651. Thus (2) when & = 1 gives F, = G,  The form

1
(5)

(2) applied to a crack was also given in 1968 by Rice, who denotes

Fl by J, and by Cherepanov.(s) By transforming (2) other path

(4,7)

one of which (with
(8)

independent integrals for Fz may be obtained,

2 = 1 and applied to a crack) was given by Sanders in 1960.

(7,9)

Eshelby shows that (2) and these transforms are valid for non-

linear materials undergoing finite deformations, with suitable defi-
nitions of the quantities involved.

In a linear elastic material, the field near the crack tip is
completely characterised, for the appropriate mode of loading, by the

stress intensity factors K K2 and K3. If the loading modes are

l’

G

studied separately we can express the crack extension forces Gl’ 2

and G3 in terms of the K K2 and K3 values, obtaining Gi = Kf /2M;

l’
where for i = 1 and 2 M is p/(1-v) for plane strain and p(l+v) for

plane stress and for i = 3, M = yu. If QYi is the energy necessary
to form unit area of the two surfaces produced when the tip advances

in any mode, a necessary condition for extension is that Gi should

reach a critical value

a 5 g2 =
Gy, = KM = 2y (4)
For Kl = (nc)%o we thus obtain the Griffith condition. Alternatively,
(10,11)

we may following Barenblatt use the moduli of cohesion

Mi = (ﬂ/2)% Kic’ for i =1, 2, 3. These measures of fracture tough-
ness are thus indirect ways of describing the effective surface

energies of fracture Glc’ G, and ch. The necessary conditions for

2c
failure may also be expressed in terms of the critical densities of

(12)

crack dislocations describing the crack shape. For an ideal,

sharp, brittle, crack we suppose that the necessary condition that G,
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reaches a critical value Glc is alsoc sufficient, since for any load
there is always a bond near the tip on the point of rupture, in which
therefore the stress is at the maximum of the stress-displacement
curve for the bond. The stability of a reversible crack of this
xind is like that of a pair of dislocations of opposite sign. Under
a uniform load there is a critical separation of crack tips (or
dislocations) for which there is unstable equilibrium. By adjusting
the loading so that G diminishes or is constant with crack extension
we can have stable or neutral equilibrium.

We can use this analysis to discuss a much wider class of

(1) (13)

fractures if, following Irwin and Orowan we interpret the
surface energy of fracture to include the energy absorbed by all pro-
cesses contributing directly to the tearing apart which occurs when
the new surfaces are formed. However, although we can in this way
discuss the important quasi-brittle and fast ductile fractures where
the contribution to the effective surface energy of the work done in
non-linear flows at the crack tip is dominant, it is not always easy
to decide what part of the energy absorbed in the non-linear pro-
cesses is to be included in y. More understanding is possible if we
use a model which takes explicit account of the non-linear processes.
Then, however, we lose in general the simple characterisation of the
crack tip field by the one parameter K. As many have

(14,15,16)

emphasised all we can then say is if two crack tips are

loaded elastically to the same K value and the non-linearity is then
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switched on, then the non-linear forces will produce similar physical

effects provided these are confined to a small enough region round

the crack tip. It is in this limited Sense only that we can still

say that a critical K or G criterion means that extension occurs when

the physical state of the two crack tips is the same. ;

Considerable effort is currently being devoted to the calcula-

tion of plastic-elastic fields near crack tips.  There has been some
progress using analytical methods(l7) but the full treatment of any
realistic problem is likely to involve extensive numerical computa-
tion, particularly if the effects produced by tip blunting and
sliding off at sharp corners, important in relating the macroscopic
plasticity to microscopic mechanisms are to be included.(le-2l)

Any simple model which can aid understanding is therefore valuable.

We may very generally represent the zone of non-linear deforma-

tion running from a crack tip by a continuous distribution of dislo-
cations which have emanated from the tip itself op which have been
Created near it. The dislocations here are not necessarily those of
crystal plasticity. They can give a formal description of the
macroscopic deformation in this region which occurs by plastic,
viscous or viscoelastic flow, and by brittle cracking and void forma-
tion.  An account of a very simple theory based on this type of
description, the Bilby-Cottrell-Swinden theory, was given by Cottrell
in 1960¢22) and developed to discuss a wide range of problems in
fracture.(23_33) Though other arrangements have been discussed,(zg)
including the representation of the relaxation by large discrete
dislocations,(sq’as) in the original treatment the relaxation takes
place by the formation of an array of dislocations collinear with the

crack tip. Mathematically this picture is equivalent to the removal
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y . 5 ion
of the singularity at the crack tip by the introduction of a regio

o

(38) this
of constant stress at the end of the crack. Dugdale used

. . in
procedure to estimate the length of the plastic zones round slits ;
(37

thin sheets (but not to discuss fracture). Leonov and Onyshko

38 s o
report that Vitvitski and Leonov( ) have used the method in a theory

¢
of brittle fracture; it is also closely related to Barenblatt's

work (3,20511) Finally, it is salutary to note that a similar idea

(39) The theory has been extended to

31)

was used in 1933 by Prandtl. i)
§ea-52) and has been widely used and

include the effect of notches

4
elaborated(q3’uu) in discussions of fracture, particularly in post
yield fracture mechanics.(us_u7) It has also been applied to .
. (23) b
fatigue.(qs-sa) The model leads to the relations
R/e = (a-e)fc = sec (m0/20}) - 1 (5)
¢(c)/c = (Hcl/ﬂM) 2n (a/c) (6) .

where R = a-c is the extent of the dislocation array near a crack of

Hy

length 2c in an infinite medium and 0 is the applied stress. In

mode 3, these relations are valid also for a surface crack of length
’

c, and Howard and Otter(su) have shown that these same functions,
5

i 1
multiplied by numerical factors, represent R and ¢(c) approximately

for a similar relaxed surface crack in mode 1. Equation (7)

predicts the observed extent of plastic zones surprisingly

well (86455,56) R and ¢(c) are also rough estimates of the

i k
maximum extent of the plastic zone (not directly ahead of the crac

i i i calculated from
in plane strain), and the crack tip displacement

plasticity theory.(23’27) For example, ¢(c) in the small scale

: _ . : ”
yielding approximation is aKz/Ecl with a = 0.89; estimates based o

L)
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iy : . : _ (20) (5)
piastic elastic calculations give a = 0.717, 0.613
(19)

and (from
finite elements) 0.425,

The DBCS model provides a system in neutral equilibrium under a

58)

) . 3,57
uniform applied loaé " Jhich represents relaxation due to non-linear

forces at the crack tip. In applying it to discuss fracture however

We use the dislocation array at the crack tip to provide also a two-
parameter model of the effective surface energy y of the fracture
process. The expression for Yisy = %Ul¢c, where ¢C is a critical

value of ¢(c). It is assumed that when $(c) = ¢C the crack will run

and failure ensue; thus a critical displacement criterion is used.

27)

We may set up an integral equation( to describe the deformation of

@ narrow layer of material in the plane of the crack, whose strength
ol(¢) depends on the relative displacement ¢ which it undergoes.
Taking ¢(x) = 0 for [ > a, the dislocations of the BCS model

may be regarded as the solution of this equation for an artificial
rectangular law of force cl(¢), where 9, rises from zero to o, at

® = 0, and then remains constant until ¢ = ¢(c), when it drops to
zero, When the relative displacement ¢(c) at the crack tip reaches
¢C, We can regard the crack as about to extend, Moreover, the work
to fracture unit area of the layer is

©

2y = f cl(¢) d¢ = cl¢c %D
0

In this way we obtain the critical displacement criterion(22’23) for
failure (¢(c) = ¢c) and the expression cl¢c for the work of fracture
2Y. When o0 << 0,» the relations (5) and (6) together with 2y = Ul¢c
give the Griffith criterion; moreover, under these conditions the
theory coincides with that of Barenblatt.  Cenerally, (5) and (8)

. (27,30
glve the fracture stress Gf\ 530 as
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o./a, = (2/m) ots {exp(- c¥*/mc)} (8)

The condition ¢ = c* defines the crack length

s i (27)
at which the material becomes notch sensitive.

where c¥ = Mo /4o -

When c >> c¥*,

2 3 n essll
(8) reduces to the Griffith condition and we have a "low str

hes o, the strength of
failure with Og << 9. For c < c*, g approac 1

the layer ahead of the crack.

i wide class
By suitably interpreting the parameters o, and ¢c a

of fractures can be discussed. We note first that we can identify

i rfaces
two fundamental mechanisms of fracture; the separation of su

brittle on an atomic scale, as in crystalline cleavage, and failure
by a ductile sliding off process, which does not involve any true

; ination of these processes.
cracking. Usually we meet some combination p

i i nce.
Moreover, the scale on which they operate is of great importa

i i hic
The engineer's greatest concern is with low stress catastrop

(24)

i modes
failures, and these we can understand if we note that two

- ive or
of fracture can be distinguished. In a stable non-cumulati

non-localised mode, the dislocations spread rapidly throughout the

ich
whole net section of the material much faster than the crack, whic!

inui i e is
can then only advance by continuing this process. Such a mod
e

typified by ductile fractures in which the material fails by macro-
scopic sliding off rather than by true cracking. The non-linear
flow cannot become unconstrained without spreading throughout the
whole net section. The stress oy must be reached throughout, and

i a condition which
as long as this mode persists we have Og v Oy and

P $ "
is not notch sensitive. An unstable cumulative or localised mod

i ii i head of
occurs when a similar localised set of dislocations moves a

i dvance
the crack as it passes through the material. The crack can a
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without dislocations spreading throughout the net section; we have
a “li: stress" fracture with 0g<< 0y, ¢c> Rand RV ek E¢c/2ul N
EY/Ol v Such fractures can occur whenever c R ¢* "N R/T, and the
condition established is a notch-sensitive one. The magnitudes of
c* and R may vary enormously, however, for they are governed by o

1
and ¢ (with y = %ol¢c). An example of a localised mode is ideal
brittle fracture. Similar mechanically are the important
discontinuous modeswhere small cracks or holes form ahead of the main
crack and the bridges between them then fail in a ductile manner.
Here we have a mixture of the two mechanisms of fracture. Ductile
materials fail not because their ductility is exhausted, as is some-
times said, but because they lose the capacity to harden, so that the
non-linear flow becomes concentrated and large strains occur. Such
large strains are possible whenever free surfaces allow large
geometry changes, as at blunting tips, or, as here, in the internal
necks between cracks and voids. These necks are like the atomic
bonds in brittle fracture, though on a vastly different scale. We
expect the heterogeneities in the material (grain size, inclusions)
to generate the small cracks or holes ahead of the main fracture and
$c to be of the order of their spacing. Other localised modes occur
when non-linear deformation may spread right across the specimen
because it is small in one dimension. For examplg21h%8;ode 1 plane
Stress ductile necking of thin sheets, the mode 3 ductile tearing of
thin sheets, and the 45° shear mode in steel plates which combines a
component of sliding off with plastic expansion of holes in the shear

zones., Typical values of ol. ¢ and Yy are(27)
c
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R = B3
oy ¢ R = me Y
-2 -2
dyne cm cm cm erg cm
Brittle yx 10t sx10? 1078 10°
Discontinuous 9 -2 7
ductile- 2 x 10 10 5 10
cleavage

We see that the notch sensitivity of the discontinuous mode begins
only for notches or cracks of macrescopic size, while the brittle
solid is weakened by the smallest notch. In very large specimens,
and in large structures in practice, failure may occur well below

general yield. This is because ¢C can be accommodated by plastic

flow at the crack tip before general yielding occurs, and the equa-
tion (8) predicts very well the reduction of failure stress which

T 285 By using the formulae of the
0)

occurs with increasing size.
T 4 ., (29)

BCS theory for a plate of finite width, Bilby and Swinden and

59 i
Smith( ’ have shown how it may be used to predict the range of

notch sizes which may cause catastrophic failure in a structure whose

size, yield stress and loading are givenj and also how to find the
safe loading of the structure for a given notch size. Extensive

numerical calculations for other geometries have been presented
recently in a similar way by Hayes and Williams.

This size effect appears again in tests on tough laboratory
specimens, which do not fracture until well above general yield.

( .
Heald, Spink and Worthington have recently applied the BCS

theory to this situation, by setting in equation (8) 0, =0, where
o is the ultimate tensile strength, and writing 2y = cu¢c =

i
Kic(l-v)/Qu. They also define an apparent fracture toughness by
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2
% - T|’ K
KA = (ﬂc)% o = 20 [ S.] 58 1 exp | - Ie ©
eum 7 3
80u cQ

where Q is a compliance factor introduced to allow for different geo-

metries. This formula gives reasonable agreement with post yield

fractures in a wide range of materials. The effect of a notch is
also included by using a result of Smith.(HO) It is suggested that
by this analysis ch values may be derived from "invalid" ASTM tests
and that the fracture behaviour of large structures may be predicted

from small scale tests; also that the use of fatigue cracked speci-

mens may not be necessary. In a paper presented to this congresgsa)

these authors show that these equations also agree well with a recent

collection of data by Orange(Sl) and provide a more consistent method

of correlating it. The effect of temperature on ch for an

aluminium alloy is shown to be due to the variation of Ou

The critical displacement appropriate for the initiation of
fracture from a notch will depend on the notch radius p and on the
experimental conditions.(za) The initiation of microcracks is we
believe due to the stresses set up by groups of dislocations
representing twinning and slip. There are a number of specific
mechanisms,(SZ) but the detailed correlation of their operation with
specific notch geometries and experimental conditions and with
macroscopic deformation fields is still incomplete. In steels at
about room temperature the crack often begins in a ductile manner
and then changes to brittle or semi-brittle cleavage as it spreads.

The main effect here is probably the reduction of Y with crack

velocity due to the high sensitivity of the yield stress to strain

rate.(28) There is currently much interest in this period of initial
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(20,63-66)
stable ductile growth, and the transition to fast fracture,

and here again the DBCS model through its extensions by

Ch anov(6’67) and Wnuk(sa’eg) provides some understanding.
erep

F, = J for
It is instructive to evaluate the energy release rate I,

und the
the DBCS model by integrating the energy-momentum tensor ro

(3,17) par
non-linear layer ahead of the crack; we find generally

o]
"

(c)
J = ]¢ ‘ 0, )6 = 0y0(c) (10)
0

in the
i is the resultant force
This we can also see if we note that Fl i

ities insi location
1-direction on all the singularities inside. On each dis

t -0.b due
the elastic field must produce a force +Olb to balance tha 1

i i = no.b = 0.¢(c),
to the resistance O,s SO that for n dislocations Fl 7 3

ince nb = ¢ c). There is now no force on the crack ti itself but
s1in

i i if the
0,¢(c)8E is the energy released by the elastic surroundings
’ . .
whole system of crack and dislocations is displaced in the

this
1-direction by 8. As is obvious from the above argument,

equal hat rbed in advancing all the disloca-
energy 1S ust to tha absorb

1° E
1 t the r istanc Although the dlsplacement §
tions by GE agains e resistance 0 £

is not an equlllbxlum dlsplacement we “'llght Perhaps have ant1C1pated

re rom the fact that the DBCS model gives a crack in
£
this sult (

1 equilibrium (3,57,58) However, as Swinden shows, the
neutral e .

: s .
1 stic energy when the
term O ¢(C) is not the whole of the available elast

ibri i additional
crack advances in an equilibrium manner, there 1s an

i v the dis-
term, which is again absorbed by work t‘equu‘ed to advance
L]

i is also
locations The energy released from the surroundings

(70} 4 ic DBCS model
exactly absorbed by the plastic work in the dynamic

71
treated by Atkinson.( ) In general we have

i hen 0/0, is small reduces
E; 2 (ucf c/mM) 2n {sec(nu/2dl)} and this w 1
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to the linear elastic value FlL = K2/2M «? = nc02). Fl/FlL
increases from unity with increasing U/ol, so that the crack appears
to the far elastic fieldlas if it were a longer one with its end
somewhere in the yielded Zone.  This is a general result, not con-
fined to the DBCS model.(g’l7’6“) However, we must use this inter-
pretation with some caution, for the energy released is used in
rearranging the dislocations, and this rearrangement must contribute
to the actual fracture process if the calculated energy release is
actually to be used to advance the crack.

When we take a more realistic model of the crack tip plasticity,
it seems obvious that the crack and its plastic zone again forms a
System in neutral equilibrium in the sense that the energy released
is absorbed by plastic work. We can evaluate again the ratio Fl/FlL
for the exact antiplane solutions of power law hardening which are
available, taking the path of integration in the elastic region or
along the elastic-plastic boundary, as has been done by Rice,(l7) and
Weé can make similar evaluations numerically in plane strain. In
deformation plasticity the Fl integral is path independent and gives
the energy release rate for a crack in the artificial non-linear
material which reproduces the stresses and shape displacements of the

plastic-elastic problem. Indeed, it is reported(u7) that Hayes

shows the integral path independent also for a Prandtl-Reuss material.

We might expect the integral taken for an incremental theory in

any case to be approximately path-independent for the type of centred
fan anticipated about the (non-blunted) crack tip.(7l) However,

the significance of these integrals requires further study, as the
following argument shows. Representing the crack tip plasticity by

2 continuous distribution of dislocations, we see that FlSE is the
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energy released when the crack and all the dislocations in the

plastic zone are displaced in the l-direction by 6. Probably some

at least of this energy is again used up in moving the dislocations;
moreover, it is not the energy released (and absorbed by the disloca-
tions) in an equilibrium displacement of the crack and the plastic
field. It is thus not obvious what the calculated energy release
has to do with the crack extension; we can only fall back, as
before, on an appeal to a comparison of the behaviour of different
cracks for which the calculations give the same Fl value.

We can obtain further insight by using the theory of continuous
distributions of dislocations. This leads to the following (path
dependent) integral giving the resultant force on all dislocations

within a surface'2(73)

(11)

- _ E
Q = £ (W sz Pis 8p) dsj

Here Bii is the elastic distortion tensor giving the incremental
. E _ E : E _ . .
elastic displacement dui = dz&Bli. Since Bli = ui,l in the elastic
region, QZ reduces to E‘2 for a path outside the plastic region. It
may however be shrunk to lie within the plastic region and can be
evaluated when BEi is known there. For the small scale antiplane
yielding from an edge slit discussed by Hult and McClintock(7u) it
gives, for a boundary defined by r = p(8) within the plastic region
k2 m/2

Q = = cos 6p(8)de (12)
1 M 2

Taking p(6) = € cos 0 we get Ql = (wk26/2u). This tends to zero as
€ *> 0, so that, as in the BCS theory, we find no force on the crack

tip itself. Note incidentally that Fl = ol¢(c) is not a general
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relation; in the antiplane strain solutions the integrands in the
intégrals for F, and ¢(c) differ by a factor cos 6, and in small
scale yielding Fl = %-ol¢(c). In plane strain we have for symmetri-
cal arrays of dislocations which have glided from the crack tip that
F, = cl¢2(c) only if § = 45%°; this relation also holds for the
linear array of climbing dislocations.

With the Q2 integral we can examine the assumptions used in the
BCS fracture theory. We recall the important classification of
modes of fracture into localised modes (of greatest practical inter-
est) and non-localised modes. It is precisely in the localised
modes that a similar distribution of dislocations moves along with
the crack as the fracture proceeds. Moreover the forward movement
of these dislocations actually represents the process of fracture,
so that the work required to move them is the effective surface
energy. If then we close the integral Ql down to enclose a narrow
region ahead of the crack tip, we do surround a system of disloca-
tions which moves forward with the crack itself, and Ql will give an
energy release rate which may be set equal to 2y. If cl(¢) is con-
stant, then Ql = ol¢c, where ¢c is the critical displacement
characterising the localised mode. This is the BCS theory.

It is clearly necessary for a complete model of the fracture
process that we should set up the equation of motion of the crack.
Although many important physical effects will be adequately des-
cribed by a kinetic theory where the strain rate dependence of y
(and so the velocity dependence) is considered, a complete discus-
sion must include inertia terms. We must use more care in dis-
cussing the energy balance about the crack tip when it is in

75,76 " . .
motion.(g’ $70) If the instantaneous crack tip velocity is v,
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the total inward rate of energy flow I(E) across a surface I sur-
rounding the tip and moving with it must equal the rate of increase
of energy ¢(I) stored within I plus the rate vG at which energy flows
to the tip.

I(Z) = vG + &(I) (13)

I(Z) is the rate at which the surroundings do work on the material
inside I, [ pijﬁjdsj’ plus the net rate at which the interior of I
acquires potential and kinetic energy by the convected flows at its
leading and trailing boundaries. G may be expressed as a general
path independent integral if the dynamic elastic field is a special
one moving rigidly with the crack tip. For a general dynamic field,
however, the integral is independent of the path only when I + 0.

Provided that the dynamic elastic field in the neighbourhood of the

crack tip tends to a field which moves rigidly with the tip G may be

written
_ lim
& = 3o é H 5 2, (14)
where Hlj =(W+T) Glj " Pyj auilaaa and T is the kinetic energy
density. The integral (14) is path independent only when I + 0,

Atkinson and Eshelby(75)

(77,78)

show that the uniformly expanding crack in
plane strain gives a G vanishing at the Rayleigh velocity and .
explain a different conclusion reached by Craggs.(79) For anti-

(80)

plane strain, G vanishes at the shear wave velocity.

The energy balance about a moving crack tip has been discussed
. . . (81,82) .
in terms of a dynamic cohesion modulus, and in terms of the

thermodynamic power balance,'®»8358%4)

To set up the equation of
motion of a crack tip in an elastic solid it is necessary to find the

elastic field which the tip moves arbitrarily and this was first done
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(81)

by Kostrov and Eshelby.(ss’es) Eshelby discusses in antiplane

strain a finite stationary crack of length ¢ whose right hand tip

Gy has

(Ji) moves in an arbitrary way x = £(t) for t > 0. Freund
extended the work by treating the semi infinite crack in plane strain,
Eshelby shows that G depends on £ and é but not on €, so that the
crack has no inertia. Given the fracture energy as a function of £
and é the equation of motion is

G(E,E) = 2y (£,8) (15)

Again, G falls to zero at the shear wave velocity in antiplane strain
and at the Rayleigh velocity in plane strain. In antiplane strain
the velocity dependence of G arises from a factor

A2(é) = |- E/e)/@L + é/c)li, where c is the shear wave velocity.
Az(é) rises as é falls, and this behaviour may help to explain crack
branching.(g) In a homogeneous medium the energy release rate

must be 2y just before branching and roughly 4y immediately after.
Any discussion of branching which neglects this point may violate the
conservation of energy. The crack can however increase G as
required by dropping its velocity. We can find the velocity which
causes G just to double if the crack is suddently halted; this gives
a critical branching velocity of éb = 0.6c in antiplane strain. Of
course, the geometry and stress field at the tip will influence the
details of the branching process, and branching may well often occur
because the surface energies of the new paths are lower than that of
the original, Nevertheless, the proper energy balance must always
be considered. These ideas on the dynamic G factor have found an
interesting application in the theory of flint knapping,(eg) an
ancient craft which has relevance to crushing, grinding, blasting,

shattering and impact testing.
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We have tried in this survey to show how a simple model can
provide understanding of a wide class of fractures. Engineers will
not need to be cautioned that the ideas of such a model must be
critically assessed by experiment and testing before they can be
applied to practice. Nevertheless it appears that certain aspects
may be of some semi-empirical value. The full interpretation of
fracture in particular materials and of the relation between the
macroscopic continuum mechanics and the microscopic mechanics must
await further experimental, mathematical and numerical analyses of
the non-linear processes at the crack tip and of the energy balance
involved there when the crack is in motion. 0f these we hope to
hear more in the specialist sessions of this meeting.

I am much indebted to Professor J. D. Eshelby, Dr. I. C. Howard
and Dr. P. T. Heald for many valuable discussions, and to

Mr. G. E. Cardew for assistance in computation.
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