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This paper considers a composite material consisting of alternate
fayers of fibre and matrix. Glass Reinforced Plastic made of glass mat
spproximates closely to such a simple model and a uni-directional or bi-
directional lay-up of fibres can also be regarded as of this type, part-
icularly if the loading is essentially in one of the fibre directions.

For uni-~directional loading, it has been demonstrated {Ref. 1) that
the displacement in the direction of loading in the nth fibre layer is

governed by the equation (see Figure 1)
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where ¢ is the displacement of a fibre layer, Ef is the Young's modulus
of the fibre material, Gm is the shear modulus of the matrix material,
hf, hm are the thicknesses of fibre and matrix layers.

In the limiting case as hf, hm + 0, we can replace ¢n(x) by ¢(x,y)

which then satisfies the equation

3% ¥
e Bzﬁ =0 )
(he +h )2 ¢
where B2 = TR s Eg » and is a constant for the material.
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This is Laplace's equation and many methods exist for its solution.
4nalytical solutions are readily obtainable for many geometries but have
the disadvantage that they lead to infinite stresses at the tips of cracks
and notches. We show how, by reverting to Equation (1), one can estimate

from an analytical solution finite values of the tensile and shear




stresses at the tip of a erae or notch. This offers cons:s rable
advantages i fracture mechanics, giving a simple stress criverion for
fracture instead of an energy criteriom.
Analytical Solutionsg

Analytical solutions for various crack geometries will be published
elsewhere, They have all been obtained for a uniform tensile load and
the geometrieg concerned are shown in Figure 2, all relating to cracks
in an infinite half-plane of material. For geometry (a), discussed in
Ref. 1, the solution has also been obtained for a sheet of finite thick-

ness, H, and it is foung that the stresses near the tip are multiplied

by the factor {—~ Tal }
tan 2 2,

Derivation of Finite Stresses at Crack Tip

At the crack tip, ¢ = 0, Using an analytical value % of ¢ on the
crack surface at a distance (hf + hm) from the crack tip, the maximum
shear strain, nm, in the first matrix layer is iumediately estimated ag

= ¢ (h +h ) / h . (3)

For the tensile stress at the crack tip, we rewrite equation (1) in
the form-——g Y - £)
where ¢ is the displacement in the fibre layer at the root of the crack
(the nth layer), f = §(¢n_1 + ¢n+l)’ obtained from the analytical
solution, and v = 232/ (hy + hm)Z.

It can be deduced from this that the maximum tensile strain is

dx . vzf flu) e M du, (4)
and the tensile Stress can be calculated from th1s.
Mechanisms of Fracture

A systematic Presentation of tip stresses for various geometries,
using Equations (3) angd (4), will be published elsewhere. In the mean-
time, we present a simplified discuscion based on the analytical solution
for geometry (a), given in Ref. 1, The tensile and shear stresses, o
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and T , in the neighbourhood of the crack tip ave given by
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in the notation of Figure 3, where o = hf / (hf + hm), the volume

fraction. Thus the ratio of maximm tensile stress to maximum shear
stress is given by nf/Tm = 1/aB.

Substituting values of fracture tensile and shear stress for g
and T in this, we obtain an expression for the critical volume fraction

which separates tensile failure (small o) from shear failure (large a)

in the form

0.2 G
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It may be noted that cleEf is related to the tensile energy density in
the fibres at tensile failure while Tm2/Gm is similarly related to the
matrix shear energy density.

Numerical Results

The quantities given in the theory are valves for the simplified
layered structure idealising the real material. For example, the shear
stress in the matrix material will differ from that of the idealised
layer assumed here and this will affect the assumed value of shear stress
for fracture; indeed, this particular quantity may be a debonding
stress rather than a fracture stress. It may well be that this model is
more suited for qualitative than for quantitative discussion and the
results given here are intended to be indicative only.

Some gxperimental stress distributions round a crack in CFRP sheet
have been obtained at the Royal Aircraft Establ?shment, Farnborough,
(Ref. 2) using a laser beem Moird fringe technique. Tensile and shear
strain contours are compared in Figure 4 with theoretical conteurs
derived from Ref. 1, modified by the correction term for finite width

given above (about 5%). These have becen calculated assuming a value
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of B = 0.18 which is a not unreasonable value for the material used. A
typical value of 8 for GRP would be around 0.3.

From Equation (5), critical values of volume fraction of 0.12 - 0.2
for CFRP and 0.04 for GRP are estimated. Thus GRP will virtually
alvays fail in shear in the matrix. Tensile failure in the fibres of

CFRP is more possible; a cross-ply lay up would have a volume fraction

of 0.25 - O.3f
Conclusions
This paper shows that it is possible to estimate the stresses in the
neighbourhood of a crack or notch tip. These can be used either in con~
junction with an energy criterion e.g. for fibre pull out or with a
strength criterion for continuous fibre layers to estimate failure loads.
It is known that debonding or cracking of the matrix in shear is the
usual cause of failure in GRP and in CFRP. It is shown here that tensile
failure is more possible under some circumstances for CFRP and a criterion
is indigated for determining the critical volume fraction. Whether

tensile or shear failure is the more desirable is outside the scope of

this paper,
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All values of strain in terms of unit tensile strain at infinity.
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