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In studying the fracture of composite materials one
may approach the problem from two different view points. In
the first approach the primary interest 'is in estimating the
"bulk strength® of the given material under a known system .
of external loads and environmental conditions. 1In this
type of studies it is usually assumed that the existing ma-
terial imperfections such as voids, inclusions and cracks
are randomly distributed and the medium is statistically
homogeneous. Thus, the very nature of the problem requires
that some kind of a statistical strength theory be used as
a quide in the investigations.

In the second approach to studying the fracture
of composites one is basically interested in the initiation
of fracture from the "localized!" imperfections which are
known (or assumed) to exist in the material. In this type
of studies it is generally assumed that the conposite me-
dium consists of perfectly bonded homogeneous elastic ma-
terials and the localized imperfection may be idealized as
a plane crack or as a flat elastic inclusion. Since the
structural strength of the composite medium is dependent to
a considerable extent on the size, the shape, and the ori-
entation of these flaws, in designing with the composite ma-
terials it is necessary to have a fairly good estimate of
the stress disturbances which may be caused by the flaws of
varying sizes and orientations. Considering the nature of
most of the currently accepted fracture criteria, it is par-
ticularly useful to have a means of evaluating the stress
intensity factors and the crack opening displacement.

Previous studies on the subject deal almost en-

tirely with the problem of a crack either imbedded in one

of the homogeneous phases or located along a bimaterial
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interface. The characteristic features of both of these
crack geometries are that the power of the stress singula-
rity at the crack tips ig -0.5 and as the crack propagates,
the stress state in the neighborhood of the crack front re-
maing selfsimilar, the only change being in the stress am-~
pPlitude. The measure of this stress amplitude is the stress
intensity factor(s) which is a continous function of the
¢rack size. O0On the other hand when the crack front termi-
nates at a bimaterial interface in the composite medium,
the power of the stress singularity is no longer -0.5 and
the angulap distribution of the stresses differs consider-
ably from that of a crack tip imbedded in a homogeneous me-
dium. After reaching the interface further propagation of
the crack may be in the form of (a) a cleavage crack into
the adjacent medium, (b) a debonding crack along the inter-
face, or (¢) a "reflected" crack back into the first medi-
um.  Also, in ga composite with a crack intersecting the bi-
material interface, the point of intersection isg a loca-
tion of very high stress concentration at which a debon-
ding crack may initiate. It ig thus clear that in none of
these crack geometries will the stress state around the
Propagating crack front remain self-similar, Consequently
in analyzing the fracture of the composite medium the con-
ventional criteria based on the concepts of the energy ba-
lance or the fracture toughnes will uot be applicable.

In thig Paper we consider the plane strain (or the ge-
neralized plane stress) and the antiplane shear problems
for a crack running into, terminating at jand crossing the
interface of two bonded elastic half planes. Even though
the technique used to derive the intergral equations is
quite general, only the case of & crack perpendicular to
the interface (for which the kernels can be expressed in
closed form) is studied. First the problem of two cracks,
One on each side of the interface, occupying (a_ .pr <b
8=1) and (a2 <r <b2, 8=0) is considered. The eiastic c§n~
stants of the two materials are assumed to be Mo my for

<
(0 < & <®, /2 <86 < 3 m/2) and Mo» #y for (05 p _ o
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- /2 < 6 < n/2). By using the Mellin transforms and assu-

ming a loading symmetry with respect to the plane (6 = o,
8 = 1), the problem is formulated in terms of the following

unknown functions:

£.(r) = & [u1(r, ™+ 0) ~u e, v~ 0)], (a1<1‘ <b, ),

£,(r) = ‘aa; [u, (r, +0) - uy (r,= 0)], (2, <r <b,),
(1)
where uk,{k = 1,2) is the 8~component of the displacement
vector in the in-plane problems and the z-component in the
anti plane shear problem. After somewhat lengthy manipula-
tions, the integral equations of the problem are obtained

as follows:

b.E b
. f_1~1121 ds + —— P.1 k,,(r,s)f,(s)ds
a, s-r T Jda 11 1
™ 1 1
b2 )
4 r k12 \r,s)f2 {s)ds = A1p1(r), (a1< r < bT)’
ks o az

(r,s)f1(s)ds

LI
— 2 _2(s) ds + = f t I,
ki Ja, s-r T 21
2 a,

(r,s)fz(s)ds = A2 pz(r), (32 < P e bz)

2 (2)

where in the perturbation problem considered p1 and P, are

the known crack surface tractions given by
p,,(f’) = Tig8 (177TT)5 pz(.r) = T256 (I‘:O):

Ak = (4’4‘1{}{)/2 l"‘lk 5 (k = 152)’ (’))

for the in-plane problems, and
P1(f‘) = T»]ez (T,TT), pz(r) = TEBZ (PJO))
A = 2/“k’ (k = 1,2), (1)

k
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for the anti-plane shear problem. The kernels k.. are
13

3 Cin o1 K

s

](1,’(1"55) = —*T' 5 kzz (P,S) = ZM 3
n=1 (s+r) n=1 (s+r)"
2 d n-1 2 d -
_ in r =1
Biglram) = § —BE— g (rya) = er

n=1 (s+r)"? n=1 (s+r)"

(5)

where the constantsg Cin and din are functions of the modu~

lus ratio “2/u1 and (in the case of in-plane problems) the

elastic constants ny and Moo Structurally, the only dif-

ference between the integral equations for the in-plane
problems and that for the anti-plane problem

the latter Cih=0=c¢

is that in

2n °? (1’1 = 2:3) and d12 =0 = dzz-

Expressing the solution of the system of singular in-

tegral equations in terms of bounded functions g5 g, as

» (0 < Re(q,, L k=
(s-a, )% (b, -5)%k < Retay, ppl< 1, k=1,2),

(6)
and applying the function-theoretic method directly to the

f':k(s) =

integral equations, we obtain the following systems of cha-

racteristic equations for various in-plane crack geometries:

(a) Imbedded cracks, a, >0, a, > 0:

cot 1 g, = 0, cot g Br = 9, (k= 1,2);

(7)
(b) One crack tip at the interface, a; =0, a, > 0:
G.1(C1.1+1)
cos 11 oy + Cyq * aqCyy *F T (:13 =0,
cot 17 a, = 0, cot ¢t 51 =0, cot ¢ 52 =0 3
: (8)
{c) Crack crossing the interface, a, = 0 = a,
CDtT‘rﬁkZO, (k = 1,2)5 Q4 2(12:0,)
1+
(cos 7 g + cy ta cyp + "Qé——ml c13)(cos Ta toey, +
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+1 -
B B +'““ig§“l_'czg) - (dyy +ad;p)(dy, +ady,) = 0(9)

Similar but somewhat simpler results are obtained for the
anti-plane shear problem. From (7-9) it is seen that when-
ever the crack tip is imbedded into a homogeneous medium,
one obtains the expected -0.5 power singularity. However,
for the crack terminating at or crossing the interface at
the singular point r = 0 the power of singularity is dif-
ferent than -0.35, Analytically, this difference comes from

the contribution of the kernels kij’ (i, = 1,2) in (2)
which also become unbounded (as r—T) as the related vari-
ables r and s go to zero simultaneously.

For the composite medium loaded outside the perturba-

tion zone of the cracks, i.e., for constant P;s> P, satis-

fying
p Koo}l
1 (ik2)M , {(in-plane problems),
P3 (1+4%1)H2
Lo M {anbi-pl blems)
= , anti-plane problems),

the system of integral equations is solved by using a nume-
rical method developed recently. The details of the ana-
lysis and the complete results for various material combi-
nations, crack geometries and relative dimensions will be
published separately in a series of papers. The published
numerical results will include the crack surface displace-
ments, the density functions, and the stress intensity fac-

tors which, for the irregular cases, are defined by

e s 5 .0 .
k(a1) = iig V2 %9 Tzee(1,0) (11)
for a, = o, a, > 0, and
kg = lim v ¢ o (r, w/2), k_= lim %7 1 g (rsm/2)
6 -0 ® T =0
(12)
for a; = a, = 0.
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