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Introduction - Basis of a strength calculation concerning the
deformation, was the observation that material-specific indi-
cation of damage cccur in glasslike amorphous thermoplastics
(crazes) and semicristalline thermoplastics (microcracks) as
well as in glassfiber reinforced plastics when predictable va-
lues of elongation are exceeded. Regarding the detaching of
adhesive resp. cohesive bonds within the microzones of GRp
this will be a criterion for permissible load.

State of Investigation up _to now - Exerting fcr the interpre-

tation of break machanism concerning glass/resin systems{?,3,§
state of multiaxial stresses were determined by experiments
and were theoretically analyzed within the microrange of a
comparable simple-to-treat uniaxial reinforced composite while
variating the macroscopic state of stress. If stress distribu-
tions within the microranges (matrix, glass, interface,glass/
resin) basing on simple assumptions (ideal geometry of fiber
distribution, ideal coupling glass/resin, neglection of ther-
mal stresses and internal stresses as a consequence of setting)
were known, it could be detected ~ by knowing every single
strength hypothesis of the above mentioned material ranges -
at which macroscopic stress combinations - a cohesive break

of glass fiber or resin Tresp. an adhesive break within the in-
terface would appear. Following the state of knowledge, the
single strength hypothesis valid for these respective micro-
ranges has to be determined empir._ _ally.

In unfavourable cases every single case has to be examined.
The dependence of time and temperaturc of plastics should be
regarded,_too, as an important fact.

Limits of Permissible Material Load in Chopped Strands Mat
Polyesters (CSM-UP)

One necessary precondition, namely the analytical description

of multiaxial stresses within the microzones of the composite,
at quasi isotropic mat laminates might hardly be obtained be-
cause of the irregular order of fibers. So dimensioning limits,
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by coordination of macre FRs

f deformation and by material -
limits. In mat laminates a damaging of cohesive resp. adhe~
sive bonds is to be registrated, if critical states of stress
within the wmicroranges of the composite are obtained. The di-
fect consequence ig a detaching along such glass fibers which
are aligned hearly perpendicular or just exactly normal to
the maximum tensile elongation. There eéxists a critical ten-
sile elongation limit as a universal material characterigtic
ﬁepending on the chosen matrix, respectively on the reinfor-
cement (see Fig. 2), Fig. 1 shows that the start of detach-
ing at the menticned test temperaturesryis not depending on
the glagg content ¥ 11072 %<é < 102%} and on the deformation
rateg - The elongation at break - up to now in connection
with the strength valueg the basis of dimensioning plastics
structures - do depend in comparison to this on?’amdé.

In addition to this they =re differently influenced by tempe-
rature, depending on the glass content (Fig. 2). 1he criti-
cal tensile elongations at the start of detaching are inde~
pendent Qf&}in wide ranges. At increased temperatures the
field of application of mat laminatesg night be limited. Drop-~
ping the coupling agent {mathacrylsilana} of the size of fi-
bers, gso thers already will be observed detachings at very
small elongations {Fig. 1). Admixing the regin additional
methacrysilane {1 waight-%) by unchanged size of fibers
{incl. methacrylsilane), so the critical zlongation limit
will be only little displaced to higher values. Long~term
tests of uniaxial ivaded laminates revealed that first de-
taching - independent of the glass content and the elongation
values obtained during the creep test - could be noticed du~
ring a foliewing continuous increase in load {éz 0,01 %/min) .,
This detachment wWas also observed in the same deformation
range {0,4<:€ﬁ70,5 %) as the ocne found in short-term tests
(Fig. 1). There have also been registrated datachings - nor-
mal to the maximum tensile elongation - in momentary biaxial
stressed thin-walled pipes as well as in long term biaxial
loading (Fig. 4). Thisg was found during direct as well as af-

Loy finished cresp tests with a follewing continucus increase

multiaxial load and

{ranges of 0,35 8

determined during creep tegts. A plurality of
under ayelic load showed that the start GE de-
taching Sus increase of load {(Fig. 3} again
<ould bs known elongation range, independent
of the ts endurance. There were also ana-
lts for oszillating uniaxial load as well as for
multiaxial lsad. Detaching will also start here, if the con~
stant critical strain will be obtained.Tensile elongations
at the start of detaching marks the transition between rever-
sible and irrveversible deformation behavicur. If laminates
chtain 2longation values above thig limit, the deformations
are no more reversible. Deformations of the unreinforced ma-
trix are even reversible after extreme tensgile elongations.
In general, such a dimensioning towards strain limit {(inde-
pendent of the discussed influences) snables neglecting the
etill remaining big "deformation reserves up~to-break” to re-
duce effectively the until now used safety coefficients. The
conventional safety Ffactors have been connected with an in-
comparably immense uncertainty concerning the break behavi-
our. First investigations show that there are also deta-
chings all along the fibers within the glass cloth and with-
in the unidirectiocnal reinforced laminates. These also time-
independent and laminate - specific elongations at the start
of detaching are the smaller the bigger the angle {in the
range oomsca) between loading and fibre direction is {Fig.7).
For multiaxial reinforced laminates first detachments appear
along such fibers which are preferred orientated normal to

the maximum tensile elongation.
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