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Introduction

In unidirectional (UD) fibre/matrix composites three modes
of failure occur:

1.) cohesive failure of the fibre,

2.) cohesive failure of the matrix, .

3.) adhesive failure of the fibre/matrix interface.
Tensile stress parallel to the fibres (jj (fig. 1) mostly
leads to fibre failure, tensile stress perpendicular to
the fibres (I and shear-stress in the LaminaplaneTq4 leads
to cohesive failure of the matrix or adhesive failure of
the interface respectively. If the stress-strain response .
of the fibre and the matrix and the failure criteria of
the fibre, the matrix and the interface are known as well
as the correlation between the stresses of the UD-Lamina
and the microstresses of the fibre, the matrix and the in-
terface, we can calculate the stress-strain rasponse and
the different failure curves of the UD-Lamina. By compari-
son of the calculated and experimentally determined values
one can conclude to the really occuring mode of failure.
Microstresses

We regard the UD-Lamina as a regular array of fibres in
the matrix (in this paper we use a mixture of square and
hexagonal array). When the UD-Lamina is loaded by a plane
state of stress,

the matrix and
the interface respectively are mainly under a plane state
of stress too. Therefore we apply as an approximation in
degermining the microstresses the so called "sliced model"
1} to the UD-Lamina. I. e. we assume that the UD-Lamina
is split up into slices of an infinitely small thickness
by cuts parallel to the Lamina plane so that no forces
can be transmitted in z-direction (fig. 1, b). Thus the
threedimensional state of stress in the matrix and the
interlface respectively it reduced to a plane state of
stress. Since the stiffness of the matrix is muech lower
than the stiffness of the fibre, the matrix must nearly
endure the whole deformation of the UD-Lamina (strain mag-
nification). The point of the highest equivalent total
stress is the slice across the centres of two neigh-
bouring fibres. Under loading byGL andfc## crazing will
start here in the matrix or in the interface. When the
load of the UD-Lamina will be increased, the cracks will
propagate through the neighbouring slices and lead to to-
tal failure of the UD-Lamina.

Materials

We tested UD-Lamina of glass reinforced plastics (GRP).
The matrix material was a standard epoxy resin, CY 232
with hardener HY 951 (CIBA-GEIGY AG, Basel). As reinforce-
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the range of prepcnderant shear loading this curve is not
realistic because the calculated curve for cohesive fai-
lure is in good agreement with experiment.

Conclusions
Under shear loadingTi UD-GRP has a higher fracture tough-
ness than under tensile loading(Gl. The ratic tensile
strength to shear strength of cohesively failed GRP is
higher than the ratic of adhesively failed GRP (see ex-
perimental data, figz. 4). If the glassfibres have a good
treatment with coupling agent {(size}, adhesive failure
under shear loading can be excluded, adhesive failure
under preponderant tensile failure is peossible but not
probable. If the glassfibres were treated with cil sigze,
the UD-GRP will fail adhesively under plane loading by
OlandTH# . This results are only valid for short time
leading under normal dry climate,

[i} A. Puck, W. Schneider: Plastics & Polymers, Febr.
1969, 33
Lﬁj W. Knappe, W. Schneider: Kunststolfe 62 (1972) No.is
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