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Fiber reinforced cementitious materials are made with Portland
cement matrices and with discontinuous randomly oriented and distrib-
uted fibers. Cementitioys matrices show in general similar mechanical
characteristics, i.e., relatively high compressive strength, poor ten-
sile strength and brittleness at failure. The addition of fibers by
amount of generally less than 102 is meant to enhance their tensile
properties, delay cracking and increase their toughness. _

The main differential characteristic of these composites, as com-
pared to fiber reinforced polymeric and metal matrices, is that the
ultimate tensile strain of the matrix is much lower than the yield or
ultimate strain of the fiber. (Fig. 1). This implies that at some
level of loading the matrix will crack and the resistance to ful]
separation is to be opposed by the fibers bridging the cracked surfaces.
In general, in this postcracking state and with current materials
characteristics and properties, the fibers pull out under a load much
below their Toad carrying capability. Further, depending on the ratio
of the fiber length to the member length, the shape of the load elonga-
tion curve suggests that the composite fracture may be brittle or

ductile-like. (Fig. 2).
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T second approach simulates the brittie-1ike failure and uses

the fracture mechanics criterion relating wminal strength, fracture
fha

toughness and critical crack radius in plae, i.2., KIC T Shom.erit e
. R

The definition of crack length, however, ittroduces a new concept in

discontinuocus fiber reinforced composites yhere randomness of the fibers
distribution is assumed. The definition tikes into account the statis-
tical distribution of largest inherent weal areas - i.e., areas without

fibers - in a random cross section and recignizes the potential effect

of these areas on the observed strength. The critical crack radius, a,
s then computed as the sum of the radius ¢ of the largest inherent
weak area and R the pseudo plastic zone racius (Fig. 3). The distribu-

tion of § is assessed by a Monte Carlo simiation technique but can also

e bounded by a mathematical Tower bound sclution. The pseudo plastic

Zone refers to an ares where the matrix is cracked and the fibers are

in a state of pull-out. Its radius R depends on the fiber Tength and is

assumed to be determined experimentally as well as Krn from double can-

tilever beam tests. The importance of the ratio 5/R is pointed out,

and the above mentioned fracture mechanics relation is used to deter-

e nom.crit,

stress distribution around a typical crack.

knowing KZF and a. Figure | shows schematically the

An example of application to fiber reirforced concrete is presented
and compared to experimental observations. It is concluded that the
overall model leads to rather realistic bourds in predicting the

strength characteristics of the composite,
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