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The motion of a circular crazing in a polymeric
medium is considered on the basis of the current under-
standing of polymers in a uniform stress field. The
polymeric system undergoes molecular orientation and in-
homogenization and create a new stress field which may be
analyzed by using a deflection function and the variation
of the Lagrangian function in terms of various energy
quantities. Through this approach an equation of motion
for the behavior of crazing in the interior of a polymer
is derived.

INTRODUCTION
In another paper the dynamic behavior of edge crazing
has been treated [1]1. Even though stress crazing incepts

much more readily from surfaces than in the interior of a
specimen, a better understanding of its behavior is not
likely obtained without considering internal crazing.
Brittle polymers may be surface strengthened so as to
create internal crazing eventually as a source of weak-
ness and failure.

In treating the problem of the dynamics of crazing,
one encounters the mathematical difficulty that the
determination of the deformation and the transition from
non-crazing to crazing surface is not clearly known. As
a result, a reasonable assumption must be made to get a
function describing the deflection of the crazing surface
so that relevant energy quantities for governing the
behavior of crazing may be computed and the equation of
motion derived.

The assumption of a relatively simple function
satisfying the boundary and initial conditions is
expected to be an excellent approximation for the
determination of the equation of motion of crazing. In
this paper a brief description of an analysis for the
propagation of a circular crazing contained in a homo-
geneous, viscoelastic medium is given. The equation of
motion is derived from the fundamental principles of
mechanics. In terms of the calculus of variations,
Hamilton's principle or the Lagrange equations of
motion is employed for this purpose.

PRINCIPLE APPLIED TO CRAZING

As often observed, assume that a circular crazing
starts from the vicinity of a point flaw usually composed
of different substance than the medium itself. Under a
simple tensile stress field the circular crazing is found
to expand uniformly and radially. Without knowing the
exact stress distribution in the neighborhood of the
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"crazing front," the deflection of the crazing surface may
be considered according to the model of a clamped circular
pPlate under a uniform constant stress.,

To a firs? approximation, if a constant stress field
of simple tension covers the circular crazing area of
radius ¢, the elastic deflection curve would be [2]

z(c,r) = ,iﬁ.(l = £~)2 cta (L
64D c?

where D = Eh3/12(1-v2) is the bending stiffness factor
with E as the modulus of elasticity v as Poisson's ratio,
r is the radial polar coordinate and h is the constant
thickness of the plate associated with the development of
crazing provided that o does not vary much. Thus the
problem can be handled as (1) satisfies the following
boundary and symmetry conditions:
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where 2z (0) is the initial deflection. This kind of
solutions can be adapted to account for time~dependent
behavior. If the medium is considered to be linearly
Voscoelastic correspondence principle may be employed to
account for the time-dependent'behavior. By introducing
a function such that

-1

= 1
£(t) = 4 57sD(s) (5)

where the Laplace inverse of essentially the stiffness
function in its Laplace domain s yields the function. Thus
(1) may be written as

%F .2
z{r,c,t) = £(t) o* (1 - sr)o (6)
is the time dependent deflection. This function will be

used to calculate the Lagrangian L of the nonconservative
system which is :

L=T+Q-U ~8§ (7)
where T = prh /€ (g% 2rdr (8)
o
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is the kinetic energy,

Q= - W2 (9)
is the heat dissipation function. Q plays the same
part with respect to velocities in the dissipative

system that potential function plays relative to the
coordinates in the conservative system with

W= L 2mricar - (10)
as the work done per unit time.
- gc B 2, 1omz L, 82102 rdr
V=4 53 (1-v7) Tr“ar2 r o (4=v) ag? T 3r)
is the strain energy (11)
and S = mlc?(t) - c2(0)]A (12)

is the increment of the "surface" energy in which c(0)
is the original crazing radius and ) is the increase in
the energy when crazing is formed.

After computation of these energy quantities and
neglect Q for slow development of crazing, one finds that
L becomes a function of ¢,¢ and t. BApplying the
variational principle that )

8 / L(C,c,t)dt = 0 (13)
and finally an equation of motion can be obtained
CTEX(£)E - BeCE2(£)E2 - 207f(t) £ (k) o

k = c" £(t) 8 En®f2 (£)c*
tgeE(r) £(r) + -t 3 I-v%)yph
-3 shsr =0 (14)

It is seen that there are quite a number of
difficulties in interpreting this governing equation.
First of all the dissipation of heat is not known so that
the temperature rise in the vicinity of crazing is not
easily estimated. Therefore the function f(t) cannot be
properly represented. However, roughly a general time
dependent function may be expected of the following form
if T is the relaxation time of the medium

3 &
%. = 3%%E%TT (1 + % & o Ty (15)
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“'ais characteristic time T together with the tensile
stress o bring out the threshold condition for the
prcpagatiop of crazing. 1In treating the limiting'case of
stability ¢ is not of interest, thus one may let ¢ = 0

in (14) and the remaining terms may be consulted.

Aside from these an important concern is that crazing
is a manifestation of the changing stress field as a
result of large local deformation and molecular orienta-
tion. It may be justified to consider = modification of
the model by superimposing a concentrated load with re-
latively high intensity uniformly distributed along the
circular crazing front. Thus the stress distribution
above or below crazing plane will not be uniformly dis-
tributed. The deflection function can be modified by
intreducing the following expressions

- —(p2p52 P R T 2_..2 2
Z(r'c't)rq" nf(t) [~(r?+g )log?(r z )+2(l+cz)(c r*)lcso
(16)
= o feei® e 592 ¢, 1 z 2_.2 2
2(xset) L, =nf () [=(r?+2%) log £ + 2(1+52) (c2-r?) cto
(17)
where n is an intensity factor of the concentrated stress
round a circle of radius ¢ whose magnitude must be less
than c¢. This increases greatly the complexity in the
analysis. It is hoped that additional understanding of
the physics of the propagation process of Ccrazing may be
obtained through this modification.
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