The Conditions Low Cycle Crack Initiation and Propagation in Stress Concentration Zones

Serensen S. V., Makhutov N. A. Moscow, Mechanical Engineering Research I-t, USSR

SUMMARY The low cycle fracture initiation in the stress concentration zones is determined by cyclic and one-side plastic strain accumulation; the crack propagation is determined by elastoplastic strain intensity. The calculated elastoplastic strain fracture kinetics are experimentaly confirmed.

INTRODUCTION The number of cycles N_f needed for fracture in the stress concentration zones under low cycle loading is equal to the sum of numbers of cycles till crack initiation N_c and for crack propagation $N_\rho \left(N_f - N_c + N_\rho\right)$. The value N_c is determined /1/ taking into account the cycle-by-cycle changes of plastic strains on the base of linear addition of quasistatic d_s and fatigue d_f damages

The value d_s is equal to the ratio of one-side accumulated strain $\bar{\mathcal{E}}_{pmax}^{(k)}$ to the corresponding critical value under simple tension e_f , the value d_F denoting the linearly accumulated fatigue damage under cyclic strain of variable amplitude $\bar{\mathcal{E}}_{pamax}^{(k)}$ being determined on the base of power type fatigue curve equation by Manson-Coffin. The values of stress $\bar{\mathcal{E}}$ and strain $\bar{\mathcal{E}}$ denote the ratio of the respective values to the values of the yield point \mathcal{E}_{γ} and $e_{\gamma}(\bar{\mathcal{E}}=6/\mathcal{E}_{\gamma})$, $\bar{\mathcal{E}}=e/e_{\gamma})$. The value \mathcal{N}_p is found by integrating the expression for the crack propagation rate $d\ell/d\mathcal{N}$ depending on the level of nominal stress $\bar{\mathcal{E}}_n$, on the elastic stress concentration factor \mathcal{L}_{δ} and on cyclic properties of the material. The strain criteria of fracture are used for evaluation of \mathcal{N}_c and \mathcal{N}_p .

RESULTS The maximum strain values $\bar{\mathcal{C}}_{max}^{(o)}$ in the stress concentration zones in the zero half-cycle are equal: $\bar{\mathcal{C}}_{mor}^{(o)} = \bar{\mathcal{C}}_n \ K_e \qquad (2)$ where $\bar{\mathcal{C}}_n$ is the nominal strain; K_e is the strain concentration factor. The stress-strain diagram is approximated by the power equations: $\bar{\mathcal{C}}_n = \bar{\mathcal{C}}_n^{(o)} \qquad \text{and} \qquad \bar{\mathcal{C}}_{max}^{(o)} = \bar{\mathcal{C}}_{max}^{(o)m_o} \qquad (3)$ where m_o is the hardening factor in the elasto-plastic region. The value K_e in elasto-plastic condition is calculated /2/ on the base of the following modifications of the Neuber formula:

 $K_{e} = \frac{\mathcal{L}_{6}^{2/(1+m_{o})} \quad \overline{\mathcal{E}}_{n}^{(1-m_{o})(1+m_{o})}}{\left(\mathcal{L}_{6} \quad \overline{\mathcal{E}}_{n}^{(1-m_{o})[1-(\overline{\mathcal{E}}_{n}-1/\mathcal{L}_{6})]/(1+m_{o})}} \quad \text{for } \overline{\mathcal{E}}_{n} \leq 1$ $K_{e} = \frac{\mathcal{L}_{6}^{2/(1+m_{o})}}{\left(\mathcal{L}_{6} \quad \overline{\mathcal{E}}_{n}^{(1-m_{o})[1-(\overline{\mathcal{E}}_{n}-1/\mathcal{L}_{6})]/(1+m_{o})}} \quad \text{for } \overline{\mathcal{E}}_{n} \geq 1$

in which n = 0.5. The maximum values of stresses $\bar{S}_{max}^{(k)}$ and strains $ar{\mathcal{E}}_{max}^{(\kappa)}$ in the stress concentration zones at half-cycle k are determined /1/ from the stress-strain diagram according to (3): $\vec{S}_{max}^{(k)} = \vec{\mathcal{E}}_{max}^{(k)m(k)}$ (m(k) is the cyclic hardening factor). The values $\overline{S}_{max}^{(k)} = \overline{S}_{max}^{(k)} / S_{\gamma}$ and $\overline{\mathcal{E}}_{max}^{(k)} = \mathcal{E}_{max}^{(k)} / \mathcal{E}_{\gamma}$ are measured in coordinates with a centre at the point of unloading. The value m(k) found from experimental data for $S_{\gamma} = 2\delta_{\gamma}$ and $\mathcal{E}_{Y} = 2\mathcal{E}_{Y}$ is: $m(k) = lg \, \bar{\mathcal{E}}_{max}^{(6)m_0} / lg \, \left[\bar{\mathcal{E}}_{max}^{(6)m_0} + \frac{A}{2} (\bar{\mathcal{E}}_{max}^{(6)} - 1) F(k) \right]$ where A is the material characteristic. The function F(k)for cyclic stable, hardening and softening materials are /1/: F(k)=1; $F(k)=(k-1)^{-B(e_{max}-1)}$; $F(k)=e^{-E(k)}$; $F(k)=e^{-E(k)}$ respectively (B and C are parameters of the cyclic stressstrain diagram). Then $\vec{\mathcal{E}}_{max}^{(k)} = \vec{\mathcal{E}}_n \cdot \mathcal{K}_{\mathcal{E}}^{(k)}$ and $\vec{\mathcal{E}}_{apmax}^{(k)} \cong \frac{1}{2} (\vec{\mathcal{E}}_{max}^{(k)} - 2) = \frac{\vec{\mathcal{E}}_{n}^{(k)}}{2}$ The strain concentration factor $\mathcal{N}_{\mathcal{E}}^{(k)}$ is evaluated by (4) substituting m(k) for m_o . The one-side accumulated strain $\widetilde{\Delta}_{max}^{(k)}$ during the half-cycle k is equal to the difference of maximum strain for half-cycles k and k-1 ($\overline{\Delta}_{max}^{(k)} = \overline{\mathcal{E}}_{max}^{(k)} - \overline{\mathcal{E}}_{max}^{(k-1)}$). The total strain $\bar{e}_{pmax}^{(k)}\cong 2\,\bar{\mathcal{E}}_{pmax}^{(k)}=2\int_{\bar{\Delta}_{max}}^{\kappa}d\kappa$

The damages d_s and d_r in accordance with /1/ are as follows: $d_s = \bar{e}_{pmax}^{(k)}/\bar{e}_p = \frac{2}{\bar{e}_r}\int_{-L}^{k} \bar{d}_{max}^{(k)} d_k$; $d_r = \frac{1}{2(\bar{e}_r/4)^{km}}\int_{-L}^{k} \bar{e}_{apmax}^{(k)} d_k$ (6) where m is the power index of the Manson-Coffin equation ($m \cong 0.5$) and $\bar{e}_f = \frac{1}{\bar{e}_r} \ln \frac{1}{1-V}$ (V is the reduction in area). The number of half-cycles $k_c = 2N_c$ till the crack initiation is determined /1/ by (1) as the upper limit of integrals (6). The following cyclic loading is accompanied by crack propagation and a variation of the strain at the crack tip. The evaluation of local strains at the crack tip is carried by using (4) and value of $d_s = \overline{K_1}/(\sqrt{2\pi\tau})\delta_n \qquad (7)$ where $\overline{K_1}$ is the stress intensity factor; τ is distance from crack tip. Neglecting $1/d_s$ for small τ in (7), we obtain: $K_e = \frac{1}{\bar{b}_c} (\overline{K_1}/\sqrt{2\pi\tau})^{(2-n(t-m_o)(t-\bar{b}_a)]/(t+m_o)}$ for $\overline{b}_n \leq 1$

 $K_e = \frac{1}{\bar{\rho}_0^{2/(m_o \cdot I)}} \left(\bar{K}_1 / \sqrt{2\pi Z} \right)^{[2-n(f-m_o)(1-\bar{\rho}_n)]/(I+m_o)} \text{ for } \bar{\delta} \geqslant 1$ The strain near the crack tip can be determined using (2): $\bar{E}_{max}^{(o)} = \bar{E}_1 \cdot K_e = \bar{K}_{Ie} (2\pi Z)^{PeZ}$ where \bar{K}_{Ie} is the strain intensity factor; P_{ze} -index (9)

of power. From (8) and (9) it follows that $\overline{K}_{Ie} = \overline{K}_{I}^{P_{Ke}} \quad \text{for } \overline{\delta_{n}} \leq 1; \ \overline{K}_{Ie} = \overline{\delta_{n}}^{(l-m)(l-m)} \quad \text{for } \overline{\delta_{n}} \geq 1 \quad (10)$ $P = \begin{bmatrix} 2 - n(l-m) & (l-m) \\ l & -1 \end{bmatrix}, \quad 0 \quad 0 \quad (11)$

 $\begin{array}{c} P_{ke} = \left[2-n\left(1-m_{o}\right)\left(1-\overline{b_{n}}\right)\right]; \quad P_{\tau e} = P_{ke}/2 \end{array} \tag{11} \\ \text{The crack propagation condition is assumed as the reaching of local strain } \overline{\mathcal{C}}_{max}^{(k)}$ at the crack tip to a critical value $\overline{\mathcal{C}}_{fc}$. The fracturing zone length τ_{f} is obtained from (9) for $\overline{\mathcal{C}}_{max}^{(k)} = \overline{\mathcal{C}}_{fc}$, taking into account the increasing of the initial crack length with the nominal stress to $\overline{b_{n}}$ (by the cut and try method):

(by the cut and try method): $\tau_{\ell} = \frac{1}{2\pi} \left(\overline{K}_{1e} / \overline{e}_{fc} \right)^2 \left[1 - \frac{1}{2\pi \ell_o} \left(\overline{K}_{1e} / \overline{e}_{fc} \right)^2 \right]^{-1} \qquad (12)$ The crack propagation rate can be calculated from (12) in the case of cyclic loading with a strain intensity factor range $\Delta \overline{K}_{1e}$ (in coordinate " $\overline{S} - \overline{\mathcal{E}}$ " for $d\ell/dN = \mathcal{T}_{\ell}$ and $m_o = m(k)$) $d\ell/dN = \frac{1}{2\pi} \left(\Delta \overline{K}_{1e} / \overline{\mathcal{E}}_{fc} \right)^2 \left[1 - \frac{1}{2\pi \ell_o} \left(\Delta \overline{K}_{1e} / \overline{\mathcal{E}}_{fc} \right)^2 \right]^{-1} \qquad (13)$

If the crack length is subcritical $\frac{1}{2\pi\ell_o}(\Delta\overline{K}_{1e}/\bar{\ell}_{je})^2 \ll l$ (14) The value $d\ell/dN$ from (9) and (14) is propartional to the square of the range of elasto-plastic low-cycle strain at the crack tip $(d\ell/dN \sim (2\bar{\ell}_{amax}^{(k)})^2$ Then, from (10), (13) and (14): where $\gamma = 2p_{Ke}$ and $C_{16} = 1/2\pi \bar{\mathcal{E}}_{1e}^{t} \cdot \bar{\mathcal{E}}_{1e}^{t} \cdot \bar{\mathcal{E}}_{1e}^{t}$. For the values $m(k) = 1/2\pi \bar{\mathcal{E}}_{1e}^{t} \cdot \bar{\mathcal{E}}_{1e}^{t} \cdot \bar{\mathcal{E}}_{1e}^{t}$ =0.02 to 0.3 and $\overline{\delta}_n$ =0.3 to 1 the value 3.93, this being in agreement with results of /3,4,5/.

In this connection cyclic softening G_7-M_0-V and lowcarbon (0.21%C) cyclic stable steels were tested under constant loading amplitudes for different asymmetry factors 7_{6} within -1.2 and +0.6 and values 4_{6} . The strain measurements were made by the grid method with a grid pitch of O.1mm. The interrelation between the values $d\ell/dN$ and $2\bar{e}_{cmax}^{(k)}$ independent on loading conditions is shown in Fig.1. The experimental data are in agreement with (9) and (14). A comparison of calculated data and experimental results at the stages of crack initiation $\left(\mathcal{N}\leqslant\mathcal{N}_{c}\right)$ and crack propagation $(N_c \leq N \leq N_I)$ are shown in Fig.2 and Fig.3. The final fracture is determined by reaching at the crack tip. $\bar{e}_{max}^{(k)} = \bar{e}_{jc}$ Critical value of $\vec{\mathcal{C}}_{\!fc}$ remains constant for different concentration levels and fracturing numbers of cycles.

REFERENCES

- І. Серенсен С.В., Махутов Н.А., Шнейдерович Р.М. Машиноведение, 1972, № 5.
- 2. Махутов Н.А. Машиноведение, 1971, № 6.
- 3. Paris P., Erdogan F. Trans. ASME, Ser. D, 1963, Dec.
- 4. Liu H.W., Lino N., Fracture, Chapman and Hall, 1969.
- 5. Черепанов Г.П. Прикладная механика и техническая физика, 1968, № 6.

Fig.1 Crack propagation rate versus local strain ran

Fig. 3 Conditions of crack initiation and propagation (1 -analyti cai, 2- experimental).