The Fracture Toughness of Beryllium

R. E. Cooper Metallurgy Division, AWRE, Aldermaston,
Berks., U. K.

1o INITHUDUCTIUN

This paper briefly surveys past worik which has been carried out
on applying the concepts of frecture mechanics to beryllium and
summarises the author's work in this area,
2,  RULCHING abD bRis CRACKING MaIHODS

A data survey by Hurd (1) shows that fatigue pre cracking

(2,3)

generally produces lower Kc vslues than other methods. Stress

(%)

arrested pre cracks can give low Kc values but lead also to a
large scatter in results. The author has discussed this problem
elsewhere(S). The author's work on machined notch specimens shows
tnat a heat treatment of 1h. 5750C causes a considerable decrease in
tne measured Kec value (figure 1), This is probably due to the
relief of compressive stresses around the notch tip produced during
machining, This is confirmed by tests on heat treated and re
notched specimens (figure 1), By considering the ligament stresses

at the crac< tip tne maxnitude of the stress relicf effect can be

estimated tc be Kegr, = 0.5 ~ 0.7

Kc as mach,
3s SPECIMIN SIZE LFFECTS

Hurd's data summary(1) shows some indication of the expected

variation of Kec with specimen thickness, b. The scatter is however
too great to enaole one to establish the plane strain region.
Beryilium is unusual in not exhiviting shear lips on fracture sur-
faces so that the degree of plane strain in a specimen cannot be
estimated visuaily, 'his is presumably due to the metals limited
capacity for shear at temperatures below 200%. The author's experi-
ments<5) show little variation of Ke¢ with thiciness for b > 0.25 in.
Calculaticn of the required thickness for plane strain using the
il procedure is difficult because of the nature of the stress
strain curve of beryllium ana the uncertainty in assigning a yield
stress. The author has carried out investigations of crack tip
plastic zones using multiple dean interIErometry(é) which show that
in fact the 0.2y proof stress is probably the most appropriate value

to choose on tne grounds of overail plastic zone topography and of
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:rties all decrease monotonically with

the elastic ana strength oo
5 ratio wihich is independent

increasing porosity except for [oisson's
ol porosity in the volume fraction range 0-0.Z4,
5 .
(5) nave developed a model

zsent author and Dr 3.... Anthony

fne pr
based un the cuncept of the pores acting as crack blunting f‘eaty_r:.;s
anicn are spaced along bthe crack front. We nave Ke = -é- o ma.x:J'n'D
where ¢ max is the maximum tensile stress in the region of the crack
Using the concept of a composite
of the natural radius

tip and p is the crack tip radius.

crack front partly of tip racius d and, ')&}‘Ely
. - P e - «F fd s
g one oblains finaily KIvb = e L2
% \de/ N 7
KIC
this expression plves fair agreement with the data in figure 3 for
wore diemeters Lo Lhe range 7-15um.
A model wnicn is pnysically more realistic since it takes int»o
Lures such as grain boundaries is based

account microstructurai i

on the councept of pores acting as flaws, fracture proceeding by the
\

(5). Consider a fracture surface

' thesc flaws
Then «( P‘)"Af)(t )A1 (#) Az( #

progressive linkage of
O nuliinb. area A but of true area 4,
wuhere n,l-\_i} is the nomalised variation of surtface area witn porosity
due to the intersection of pores anc Az(r) ie the nomalised variaticn
due to fracture surface topograpay (ie surface roughness), A1(P) is

given by a,x(k'") = 1= :'AZ(P) will be a function of grain boundary
strenitn, grain size, cleevage strength, preferred orientation ete

ie a couplicated function out tne boundsry conditions are
4,(1) met 8t ¥ = U anc Ae('r’)"~1 as F¥1. isxperimental observations
suinest .n additicn that 1.2(‘r') reaches & maxinum at P~ 0,07-0.10.
hness olU of tne porous material

Considering ione fracture tou
fuir) = fu(r) &) 2
)

i [+
sac sy = so{1-2.00)\Y

€ ave
" — % i n!‘i’\z " 4 i
Whiisl G\F) = Go(F) i = Go(Fr) Az(r’) (1-p)
Assuming thet Goii) varies with porosity in the same way as does the
ultimate stren;th ot beryiiium we have Go(F) = Go o TiebP




&
Thus we have KIG(P) = KIC f(1-2.08) (1-)e ™% 4 (1)} 2
® KIC (1-3.95P) 4,%(r)
This expressicn predicts qualitetively the vevaviour shown in igure 3
and although not fully quantitative is considerec physically wore
realistic than the crack blunting model.,

Other possible explanations for the effects of porosity(s) are
that the porous material could be acting as a series of ligaments all
ot' which are in plane stress due to their small transverse dimensions
or alternatively that the porous material has modified mechanical
properties so that the application of relationships between fracture
toughness and tensile pr0perties(10’11)leads to a variation of tough-
ness with porosity. Neither of these explanations can easily explain
the maximum toughness at P ~ 0.05 however,
7s CONCLUSIONS

(1) The plane strain fracture toughness of fuily dense beryilium
lies in the range §-16 Kpsi

(2) Compressive stresses cue teo notch machining can cause large
errors in fracture toughness measurements,

(3) A small amount of porosity has a beneficial effect on the
fracture toughness and Charpy impact properties of' ceryilium, A wmodel
in which the pores are regarded as flaws provides a semi Guantitative
explanation of the effects.,

(4) The theoretical aspects of the effects ol porosity on
fracture toughness of vrittle and semi brittie materials need further
investigation,
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X |RCICATES RAESULTS CONSIDERED DOUBTFUL BY PRESENT AUTHOR

L4
FIGURE & PLANE STRAIN FRACTURE TOUGHNESS OF FULLY DENSE BERYLLIUM
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ADSORBED ENERGY FOR POROUS BERYLLIUN

CHARPY V= HOTCH





