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Austenitic manganese (Hadfield) steel, due to its high strain
hardening capacity has been used for almost 90 years in components
which must withstand high repeated impact and wear conditions, Little
is known about its quantitative cyclic stress~strain behavior, frac-
ture toughness and fatigue crack growth behavior. The objective of
this paper is to provide this quantitative behavior for two plate
thicknesses from two different heats. Plate stock, 1/4 in. and 1 in.
thick, was obtained by hot rolling at 1920°F followed by a water
quench. The chemical composition varied in the two heats and is
given in Table | as percentage by weight. It was not possible to ob~-
tain the two thicknesses from the same heat.

CYCLIC STRAIN HARDENING: Monotonic tensile and cyclic stress-

strain behavior for 1/4 in. stock is shown in Fig. 1. Mechanical
properties for both thicknesses, which varied somewhat, are given in
Table 1 where: Sy = .2% yield strength in ksi., Su = ultimate
strength in ksi., o = true fracture stress in ksi., m = monctonic
strain hardening expcnent at large strains, Rc = Rockwell hardness
and Kc = plane stress fracture toughness in ksiYin. Two strain
scales are used in Fig. 1 to emphasize the cyclic strain hardening
behavior of Hadfield steel. Solid dots on the cyclic stress-strain
curve in Fig. | were obtained from the tips of steady-state hyster-
esis loops shown in Fig. 2. These hysteresis loops were obtained at

0.1 Hz frequency under constant axial strain amplitude incremental
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facilitate proper crack monitoring and to remove the undesirable de-

carberized martensitic surface skin. Specimens were loaded in the

Crack growth was measured optically at 10X magni-

The

rolled direction.
fication with a traveling microscope and stroboscopic lighting.

least scale division was .001 in. Crack length versus applied cycles

for the 1/4 in. material is shown in Fig. 5 for five different load
ranges as indicated. Figures 6 and 7 show the crack growth rate ver=
sus stress intensity range for 1/4 in. and 1 in. material respective-
ly. The data agrees well with the crack growth rate law proposed by
Paris(4), da/dN = A( 2 K)". Scatter band limits and mean values are

For 1/4 in. material, A was .2 x 10-8

8

indicated in Figures 6 and 7.
in./cycle and n was 2.39 while for 1 in. material, A was .36 x 10°

in./cycle and n was 2.30. These values are comparable to those ob-

tained by Barsom for many steels.(5)

Typical fatigue fracture surfaces for both thicknesses are shown
in Fig. 8. Fatigue cracks propagated under flat plane strain condi-
tions until final fracture at which appreciable necking is noted.
Fig. 9 is a scanning electron fractograph for the 1/4 in. material

" " e o
showing fatigue striations. The surfaces were observed at a 45 an-

gle and only a small percentage of the actual fatigue crack growth

surface contained striation markings.
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