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1. Introduction

In this paper we shall consider fibrous composites in which
cylindrical aligned fibres are introduced into aﬁ isotropic matrix and
aligned parallel to the tensile stress. We shall deal with specimens
which are not intentionally notched and will regard failure as termina-
tion of the stress-strain curve. It must be recognised at the outset
that in a fibrous composite fracture in one or other of the components
may occur, and usually does occur, during the stress-strain curve of
the composite prior to this stress-strain curve passing through a
maximum. Fracture may, therefore, be occurring throughout the stress-
strain history of the composite and is not necessarily confined to the
final stages. This means that in considering the strength of laminates
containing fibres running in various directions, and in considering the
fatigue and creep of composites, the fact that one of the components
may be broken early in the stress-strain curve must be considered,

In a ductile material the tensile stress to produce failure is
not well defined - failure occurs in tension when a point of instabil-~
ity is reached. This point of instability depends on both the stress
system and the strain rate. Nevertheless, in order to systematise
our description of events, we will suppose, first that we are dealing
with an aligned fibrous composite in which both phases are continuous
and each possesses a yield stress (subscript y), a UTS (subscript ult)
and a fracture stress (subscript f). Thus - is a yield stress of
the matrix and Opp & fracture stress of the fibre., For a brittle

fibre Epp 7 €41t and for a ductile fibre cyf <€t £ < Crpe
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forms are assumed for the stress-strain curves of the two components,

The load on a composite is given by
= +

F Ophe * o AL eae (1)
Stability is assured, provided for an increment of strain of the com—

posite de, assumed the same in both components, we have dFC > 0,

We may write
on s €2)

dFC = cfdAf # Afdof + omdAm + Amdom.
Dividing both sides by (Af + Am) where A and A, are the areas of

fibre and matrix respectively in a composite, and noting that

dA, A
de, = - — = - -2 eee (3)

A, A

& m

we have as the condition for stability of the composite in tension
Ve (dog/de - cf) L (dcm/ds - Jm) > 0. eee (W)

This is a statement of the Consideére criterion applied to a two-phase
composite and from it an expression for the ultimate stress and
ultimate strain of the composite may be obtained, provided a form of

stress-strain curve is assumed both for fibre and for matrix,

Mileiko assumes a simple power law for the stress-strain curve,

The true stress varies with true strain as

voe £5)

in which ¢ and n are constants for each component. Garmong and

Thompson on the otaer hand, take

e 1 eee ()
o
Garmong and Thompson consequently have a larger number of adjustable

parameters than does Mileiko. Both works lead to essentially the same

conclusion: these are that both the ultimate tensile strength of the
composite and the strain at whica this is reached vary smoothly with

component volume fraction and with the values of these quantities for
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the two constituents. The results have been applied to the data
presented by Kelly and Tyson (1965) on Cu-Mo, Piehler (1965) on siiver
containing stainless steel, Ahmad and Barranco (1970) on tantalum in
copper, and Mileiko also applies his results to some previously unpub-
lished work by Markov in Russia on nickel containing tungsten., A plot
of the true strain at ultimate tensile stress against volume fraction
is shown in Fig, 1 using Garmong and Thompson's formulation. The
agreement is satisfactory and within the experimental scatter of the
results. The agreement shown in Fig, 1 is typical of the agreement
between either of the two theories and experiment for all the systems
tested, However, it appears noteworthy that for Ahmad and Barranco's
data and for nickel reinforced with tungsten, reported by Mileiko, at
small volume fractions the measured ultimate tensile strength is some-
what higher than the theory predicts, Also, Bomford and Kelly (1971)
find that Mileiko's equations, fitted to the results on copper-tungsten,
understimate the observed strains at which the UTS of & composite is
reached, and also predict a variation of UTS with volume fraction which
coincides only with the lower limit of the envelope of the experimental
results,
Mileiko's result enables explicit expressions for the 91t o
and L1t o (note %1t is not a true stress, it is the convention-
ally defined ultimate tensile strength) to be written., From these it
can be demonstrated that if the ultimate tensile strains of the two
components are the same, then the ultimate tensile strength of the
composite is given by a simple addition
ult ¢ %ult £ Vf * it m Vm' e (7)
This corresponds to the line AB in Fig. 2. According to both theories

the line AB can never be exceeded; it would be interesting to
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investigate further the positive deviations above the line shown by

i that
Bomford and Kelly's and Ahmad and Barranco's results., It is clear

1 i train to
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i mist
the ultimate tensile strength, then the strength of the composite

fall below the line AB. The usual case is when the fibre has a much
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Mileiko's expression may then be written as

V) +1+e } .
Cult ¢ Fult n//[(dult £ Vf/ault m m ult m "

but if
tends to zero, €41t ¢ tends towards €1t m

v
As 01t 1 Ve

. n the breaking strain
is much greater than %1t m Vm then

a v
ult £ °f

i f the
of the composite is much smaller than the breaking strain o

; . OB
matrix. The lower limits to the strength are given by the lines

and AO in Fig. 2 where the curve to the line AO is

vee (9)
= 1-V,)
% 7 %ultm ( £
and OB has equation
= g Vv, +go' V ..o (10)
uit ¢ wit £ f mom

wher a? equal to the stress on the matrix at the failure strain
here 1s qu es

of the fibres. If the yield strain of the matrix is equal to or

greater than the ultimate tensile strain of the fibres, then

cé = E;mcult s ol

Thé decrease in strength shown by the line AO is only observed if
fibres with a very small brezking strain are introduced into a matrix.
Tt has been established clearly in a number of cases, €.g. by Kelly
and Tyson (1965) for tungsten in copper and Calow, Robinson and

Hambling (1968). The last results for small volume fractions of
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molybdenum in lead are shown in Fig, 3.

We will show later that there is a theoretical possibility of
increasing the failure strain of the fibres at small volume fractions
in a composite, provided the fibres are very small.

Equation 8 shows that the breaking strain of a composite will be
much larger than the breaking strain of fibres which are essentially

brittle, provided o Vo>

¢ A 1 £ 1
STE @ %1t £ Vpe In the region of volume

fractions to the left of O in Fig. 2, the following
inequality is obeyed

v o 4
A TR R cee (19)

%1t £
The composite can be strained to a considerably larger brezking strain
than that of the fibres and the fibres must break, Tnis has been
observed to occur in copper-chromium (Hertzberg and Kraft 1963),
copper—tungsten (Kelly and Tyson, 1965b) and in low carbon steels, e.g.
iron-0,02 wt % carbon which has beea heat treated to produce cementite
plates and then heavily deformsd so as to break the plates, Lindley,
Oates and Richards (1970), Fracture is a progressive one with strain.
Initially the fibre or platelet is brokea into long lengths and these
pieces fracture further as strain proceeds. Taeoretically one expects

a lower limit to the size £ given by

< o]
ult f
= 5 e .em €12)

4T
where d is the diameter and 7T an upper limit to the shearing force
per unit area which may be exercised by the matrix upon the fibres.,
The distribution of sizes when the limit is reached is expected to be
such that the lengths lie batween € and 2., The weighted average
will lie nearer to ¢ Dbecause there will be a larger number of the

smaller pieces,
PLOVII-143
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It is the recognition that there is a lower limit to the size
into which pieces of fibre or reinforcing plate can be broken by flow
of the matrix that gives rise to the idea of a critical length, namely
the minimum length of fibre which can be broken by a flow of a
particular matrix., The concept is well known and extensively applied
in considering the fracture of aligned composites. It is, of course,
also important in the transverse deformation of aligned composites.
A number of people have studied the transverse deformation of a com=
posite consisting of ribbons, e.g. Anderson and Bode (1972). The
striking pictures taken by Anderson and Bode illustrate how "puli out"
develops during the fracture of a composite, It is evident that one
can develop the concept of a critical length not solely from flow past
the ribbons but in terms of the degree of critical overlap between the
ribbons, such that if there is not sufficient overlap, the ribboas
will all pull out: if there is sufficient overlap then they will break,

Bl Continucus Fibres ~ Fibres Brittle

If fibres are brittle then a lower limit to the strength is given
by eguztion (10), corresponding to the line OB in Fig, 2. Howaver, at

7

critical volume fractions greater than that given by 0, failure of the

fibres must lead to immediate failurse of the composite if the fibres
all break at the same load. It must be recognised that with a brittle
material the fibres are not of equal strength and some account must be
taken of the variations of strength of the population of fibres in
defining o ., . in (10). In addition, when a fibre fails there is a
stress concentration ab the neighbouring fibres, This stress concen-
tration may be as large as a factor 2 if the matrix is incapable of
bearing any load but in many cases is less than 2, see e.g. lockett

(1971) . The process of failures, taking into account the variation in
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the strength of the fibres, and of the stress concentrating effect has
been considered by Rosen and his colleagues, e.g. Rosen (1970). These
theories have been discussed in detail by Hale and Kelly (1972). e
give here a short account of the discussion by Hale and Kelly. The

most widely used expression for the variation of tensile strength with

length, of a population of fibres is the Weibull distribution, viz.

£(o) = Lo exp ( - 1ao) e
where f(g) is the probability density function, i.,e. the probability
of the fibre stress lying between ¢ and (g * do). L 1is the fibre
length and = and B are two parameters describing the distribution.
Colman (1958) has shown that for fibres with a strength independent of
the rate of loading, such a distribution of strength would be
expected. This expression can be used because one can relate the mean
fibre strength 5 and standard deviation s by the following

expressions:

g = (aL)—VB 1+ /) vee (W)
s = @ VBlro e 2p - TR0+ o2 . sia 4115

The coefficient of variation is given by

[e(1 + 2/8) - 1201 + /D))

T e sws (16)

(1 + 1/8)

w

[eW]

and p is hence a function of B only. Rosen points out that for
2

g
o JC

0.05 < i < 0,5, which covers most fibres, then p is of order ﬁuo
For glass fibres the coefficient of variation is about 0.1 correspond-
ing to a value of 11 for g. For boron filaments p 1is about 1/3. The
values of the parameters = and B can be obtained directly from

experimental data, e.g. from the values of the mean fibre strength (14)

and the standard deviation using (15) and (16). The strengths of

P, VIT-14%
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bundles of fibres have been analysed by Daniels (1945). He shows that
for a Weibull distribution of fibres the expected value (mean strength)
of the tensile strength of a bundle expressed as an average stress per

fibre in the bundle, is

5 = (L aﬁe)—vB eee (17)
where L 1is the length of fibres in the bundle.‘ Colman compared this
value for the strength of the bundle with that given by equation (14)
for the average strength of fibres.of the same length. It is then
clear that when there is no dispersion of the fibre strength (p very
large), then the bundlé strength is the same as the mean fibre
strength. As the coefficient of variation of fibre strength increases
above zero, the bundle strength approaches zero in the limit of
infinite dispersion. When the coefficient of variation is about 20%,
the stirength of the bundle is about 70% of the average strength of the
fibres. This is the result often quoted in the literature Its use
demands a knowledge of the variation of s with length of fibre.
Rosen (1970) introduces what is called the cumulative weakening
model in which the fibres break and a length near their end becomes
ineffective in bearing load. This length, the ineffective length, is
related to the stress transfer length above, Rosen then considers the
composite to be made up of a set of bundles of fibres, the length of
the bundles being equal to the effective length and he then considers
these bundles as links in a chain and considers the probability of a
particular link failing. In fact, he later assumes that the number of
elements in a bundle is so large that the standard deviation of the
strength of a bundle is zero, and under this condition the statistical

mode of the composite strength becomes equal to the average strength

of a bundle, as equation (17). It follows that the most probable
PL VITI-143
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failure stress of the composite is

oy = TV, (¢*age)” VP ve (18)

where Vf is the fibre volume fraction and £* is the ineffective
length; the strength of the matrix is neglected here. Some results of
the strength of a composite consisting of aligned continuous fibres of
boron-aluminium taken from the work of Kreider and Leverant (1966) are
shown in Fig. 4, Kreider and Leverant state that the average tensile
strength of the filaments is 425,000 psi and the diameter of the
fibres is between 0.004 and 0.005 inch, Boron filaments usually have
a coefficient of variation of between 0.2 and 0,4 - Kreider and Lever-
ant say that their filaments have p = 0,2, We may thus take the value
of B as one third., Boron filaments have a strength usually measured
in one inch lengths; assuming that this is so for Kreider and Lever-
ant's values, we have

r1+ 3 = 6,
and hence can evaluate (aL)_1/5 for a given value of L. We can then
calculate the ineffective length which would be necegssary to accouat
for the results, If the ineffective length is 0,71 in, the calculated
line passes through the middle of the experimental points for the
sintered aluminium-boron, If it is to pass through the outer envelope
of the experimental results - see Fig. 4 - then the ineffective length
must be 0,66 in,

It is sensible to relate the ineffective length to the value of
the quantity £ in equation (12) by taking €* =4 /2, Then using the
expression for £ in (12) we can relate £* +to a value of T. The
two values of € * yield values of < of 375 psi and 400 psi respec-
tively., Any stress concentrating effects due to the presence of the

broken ends which accumulate during the deformation of the composite

PL VII-143
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will enable the results to be interpreted using larger values of £*,
For example, if a broken fibre concentrates the stress on its neigh-
bours by a factor 7/6 = 1,146, then £ * could be as small as 0,63 in
and T as large as 464 psi,

L.  Continuous Fibres - Brittle Matrix

In this case we assume that the matrix is brittle and

cym =€t e We further assume that €u1t £ 1S much greater than

€01t m* Two cases must then immediately be considered: that in which
the modulus of the fibres is greater or less than that of the matrix.
If the fibres have a lower Young modﬁlus than that of the matrix,
then when a composite attains the failure strain of the matrix Edt !
the load per unit area borne by the fibres is less than the load per
unit area borne by the matrix., At small volume fractions of fibres
the strength of the composite will be less than that of the matrix and
the variation of ultimate strength of the composite with volume frac-
tion will decrease with increasing Vf, following the line AB" in
Fig. 5, Correspondingly, if the modulus of the fibre is larger than
that of the matrix, then when the matrix fails the fibre will carry a
larger load per unit area than that of the natrix and the strength of
the composite will rise with increasing volume fraction of fibres
following the line AB' in Fig. 5. In both cases the intercept on the
ordinate at Vf =1 is €om Ef. In one case this is smaller than the

stress on the matrix at failure and in the other case it is larger.

If the fibres are considerably stronger than the matrix, that is %41t £

much greater than then failure of the matrix will only result

it w
in failur:z of the composite for small volume fractions, The condition
that failure of the matrix lsads to failure of the composite is that

- 1]
ult m Vm > 9t Uy vaf saw (19)

PT, VTT-143



12

where d% is the stress on the fibre when the matrix breaks and is

equal to it m Ef. This equation defines the critical volume frac-
tion, Vf, such that
<]
yr o= ult m . eeo (20)
£

(01t £ * %1t o = 9P

For volume fractions greater than this, the breaking stress depends
only on the breaking stress of the fibres and is given by O.1t fvf.
For smaller volume fractions, there is an increase in breaking strength
of the composite above that of the matrix, only provided the modulus of
the fibre is greater than that of the matrix, In the region where
volume fractions are larger than that given by equation (20), the
strength is indegendent of the modulus of the fibres and depends only
on the breaking strength.

If Vf < V% when the matrix fails the fibres are unable to bear
the load placed upon them, If they are ductile, they neck down and
break, The region over which further deformation of the fibre occurs,
after failure of the matrix, is confined to a small region on either
side of the initial crack. Only one crack is usually formed. The
elongation of the specimen is governed by the length of region over
which the fibre continues to plastically deform, This region is
generally shorter than the specimen length and so the failure strain
of the composite will be very much less than that of the fibres.

What experiments there are, Grenier and Cooper (1969), indicate that
the failure strain of the composite, or more accurately, the ultimate
‘tensile strain of the composite is, in fact, smaller than that of
either component, i.e. smaller than that of the matrix. Whether this
is a real effect remains to be seen. It may be that the method of

preparing the matrix in the presence of fibres is different from that

PT, VTT-143
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of preparing specimens of the matrix without any fibres and aence the
failure straias of the matrix are not the same outside the composite
and in it,

In the regiocn of volume fraction greater than that givea by (20)
continued deformation of the mpesite atter the firct mabrix ceack
must result in further crackiig of the matrix, When multipls fracture
of the matrix occurs, the limiting crack separation is between x' and
2x', though in this case, in contrast to equrtioa (12) above, we have

x!' = (Vm/Vf) “Ult m r/2v , ess (21)

The difference betweea € -nd x' in equations (12) and (21) respec-
tively is noteworthy. It arises because in multiple fracture of the
fibres, the lcad necessary to break the fibres and the load transferred
across the break, both depend on the radius of the fibres and nence
there is no term (Vm/Vf) in equation (12).

According to equation (21) the crack spacing should decrease with
the decrease in radius of the fibres for a given volume fraction. A
decrease in the r=dius of fibres corresponds to an increase in the
area of fibre-matrix interface per uait volume. This can easily be
seen since the area of interface per unit volume of the composite is
just (2Vf/r) and hence equation (21) can be written

xt o= (v It o € (/) .ee (22)

where a, = (2Vf/r) is the area of interface per unit volume of the
composite. According to (21), the spacing of the cracks should
decrease without limit as r becomes smaller, However, other effects
must intervene and we deal with these below,

Fig. 6 shows the stress-strain carve of a specimen undergoing
multiple fracture of the matrix. It has some features of special

interest. When the failurs strain of the matrix is attained, the load
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14
carried by the matrix per unit area of composite is thrown onto the
fibres bridging the crack., The fibres elongate further under this
additional load, which can be assumed to be transmitted back into the
matrix over a distance x' on either side of the crack, by constant
limiting interfacial shear stress T, given by equation (22).
Whether or not the fibre and matrix are completzly debonded governs
whether or not T is independent of distance along the interface in a
direction normal to the crack. This point has been discussed in detail
by Aveston and Kelly {1972), who conclude that except for very special
cases, the debonding will usually be complete after the appearance of
the first crack. This argument will be reinforced if the fibres are a
ductile material which is plastically deforming, since then the Poisson

much larger than that of the matrix and this

[}

ratio of the fibre will b
will tend to pull the fibre away from the matrix. Accoriing to

equation (21) the additional stress in the fibres will, therefore, vary
linearly between zero at a distance x' from the crack to a maximum of

g (V_/V.) at the crack., The mean additional strain over distance
ult m> m'. £

2x' is & Emu/z where

« = EV /BV. oo LE3)
If the matrix has a well defined breaking strain, the cracking will
continue at a constant stress Ec €um until the matrix is broken down
to a set of blocks, each of length between x' and 2x'. For the
lowsr bound to the crack spacing, x', the maximum additional stress
in the fibre at the crack is still 91t m Vm/Vf as before. The
maximum length over which this additional stress can be transferred
vack to the matrix is now reduced to x'/2 and so only one half of
the additional stress can be transferred to the matrix. The mean

additional strain over the leagth x' is, therefore, increased to

PL, VII-143%
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3a Cum/a' Toe total strain at the limit of muitisie o

the
erefore, Cum (1 + a/2) < €< Cum (1 + 3a/4). A further inee

of the load on the composite will result in the fibres being stretanad
further and slipping through the blocks of matrix which can take no
further share of the load, so that the Young modulus of the spocimen
will become Efo. Tae composite will eventually fail at stress

%1t £ Vf and strain e given by

(e ~ e, /2 < ¢ < (e = @ e,/M). cee (2W)

It is noteworthy that the predicted failure strain of the composite is
in all cases, of course, less than the failure strain of the fibées

5. Constrained Failure

| . . ;

When a single crack is formed in the matrix running completely
across the specimen normal to the fibres, the fracture surface
ener i a of i >

&Y Y, rer unit area of matrix mist be provided by the work
done by the loading system. If this energy cannot be supplied at
+ rackiz rai Fri
the cracking strain of the matrix, the matrix will be prevented
Foa s . :
from cracking until some larger strain is attained (Aveston, Cooper
and Kelly 1971),

i N . :

When a crack is formed under conditions of fixed load, the follow-
ing energy changes occur:

(a) Work is done by the applied stress since the body increases
in length so that it becomes more deformable. This work, if the crack
is formed at a s i is gi

train €,m 18 glven by

2
8W = B = '
e Sum X % oee (25)

The matrix slides back over the fibres and the fibres extend
Where the displacement of the fibres and matrix differ, work is done
against the frictional force =

times the difference in displacement,

This work is given by
PLoVTT-1473
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E 3 +a). vee (26)
ug = Efﬁh Vm/ET Em* T (1+ a)

& Dyt
i i k s e 2x
The matrix looses elastic strain energy because over a distanc
since the strain in it is reduced. This work is equal to

] < g2 e (22)
u. = EfEm Vm/BC €l & T

There is an increase in the elastic strain energy of the fibres. This

energy is equal to

B

EfEﬁ Vm/ZT 83 ar (1+a/3). eee (28)

1 um

£

This work done by the applied stress 6W above can be rewritten in

: . v
terms of the quantities a and r by substituting for x' in

equation (25) from (21). We have

> 1+ a), see (29)
sW = EfEm Vm/2m Em® T ( a

i i we must then have
In order to form a crack at a breaking strain -

> 2 .. (30)
< . "
ZYme = EcEf el * v/67 .

; i is i i i hen if the
It is clear that if Yme is independent of fibre size, then

radius of the fibres is decreased with other factors held constant,

i i i the
we enter a regime of fibre size in which cracking cannot occur at

1 i i be
normal strain of the matrix: the composite strain will have to

increased to a value €oc given by
1
/5 52 }"’ (31
= q ; v - eoe
e = {IET Yo Efo/EcEm r vV

In Fig., 6 the normal brea<ing strain of the matrix is 0.02%. One

sees from the figure that the breaking strain has been considerably

increased and no cracks appear prior to a strain of 0,09%. The

: e B in
evidence for this is given by the acoustic emission counts. Taki g

10 2
= = 10 ne/cm
Y, = 105 ergs/cmz, a = 0,82, Vf = 0,084, Ef 210 x dy i

we obtain a calculated first cracking strain of 0,9% in very good

PT, VTT-143
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agreement with experiment,
It is clear from the physics of the argument just given that in
a8 composite of small Vf in a matrix with Eym > Cult £ that a
equation analogous to (31) is used. This case is also investigated by
Aveston et al (1971) and it is concluded that suth will only be

observed with small fibres,
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_ 3
ug E.E Vm/61 €T (1+ ). e (26)

- ; q :
The matrix looses elastic strain energy because over a distance 2x!'

since the strain in it i i i
rain in it is reduced. This work is equal to

_ .3
u E.E vm/3c €, @ T s 2D

There is an increase in the elastic strain energy of the fibres., This

energy is equal to

_ 3
uy EE vm/zw €L, OT (1 + a/3). ees (28)

This work done by the applied stress ©&6W above can be rewritten in
terms of the quantities « and r by substituting for x' in

equation (25) from (21). We have

= 4 3
sW E.E vm/zm € & T 1+ a). ves (29)

In order to form a crack at a breakir strain ¢ ust then hawv
” re
t ¢} i 8 a we mas ave

oy v 2 e
YoV EE. el @ r/6T . oo (30)

It is clear that if Yme is independent of fibre size, then if the
radius of the fibres is decreased with other factors held constant,
we enter a regime of fibre size in which cracking cannot occur at the
normal strain of the matrix: the composite strain will have to be

increased to a value ¢ iv
cc Biven by

gt
fcc © {127 T Efvg/EcEi £ Vm js : -ee 3
In Fig. 6 the normal brea<ing strain of the matrix is 0.02%. One
sees from the figure that the bresking strain has been considerably
increased and no cracks appear prior to a strain of 0,09%, The

evidence for this is given by the accustic emission counts. Taking

- 2

= 10 =Q V. =

Y ergs/cm”, & = 0,82, V, = 0,084, E, = 210 x 1010 dyne/cm2,
we obtain a calculated first cracking strain of 0.9% in very good

PT, VIT-1473

agreement with experiment,

It is clear from the physics of the argument just given that in
a composite of small V. in a matrix with cym'> gult £ that a
brittle fibre should be extended to larger strains before failure if an
equation analogous to (31) is used. This case is also investigated by
Aveston et al (1971) and it is concluded that such will only be

observed with small fibres.
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