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Introduction.

Non-metallic inclusions are known to play an important role

in the fatigue of metals by serving as potential fatigue-crack
nuclei. In the fracture-mechanics approach to fatigue an inclu-
sion is treated as « sharp defect, notwithstanding its finite
root radius. A less conservative procedure, allowing for a pe-
riod of crack initiation, will be outlined in the following.

Stress—-intensity factors.

In view of the 1nherent weakness of the phase boundary between
inclusion and matrix, it will be assumed that the inclusion
acts as a cavity during the tensile part of the loeding cycle.
The fracture-mechanics part of the analysis thus requires
xnowledge of the stress-intensity factor, K, for a crack ori-
ginating from a notch. A first approximation of K is given by

K = (cac,)® nl 1 <1*
2 2 * (M
K° = (Yoo) m(a +1) 1=21
where
* a
o (2)
(ca/y)2-1
and
a = notch depth
1 = crack length
S, = nominal applied stress
a = stress-concentration factor of the notch
y = crack-geometry factor
r = surface-crack correction factor (= 1.127)

Fig. 1 illustrates the application of Eq.(1) to a circular

hole with symmetric side-cracks (a =3, y=1). The more accu—




rate Bowie solution [1], tabulated by Paris and Sih [2], has
been included for comparison. From Fig.1 it is inferred, that
for 1 >1* the influence of notch shape can be neglected, and
the effect of the notch merely becomes that of increasing the
effective crack length. In the above case 1%= 0.09a, and

in general, except for very mild notches, 1%<< g.

Crack initiation.

A prerequisite for crack nucleation is localized, cyclic plas-
tic flow, which may occur, under nominally elastic conditions,

at a free surface or at an internal discontinuity [3]. In the
latter case, crack extension by fatigue may be divideqd into
two separate stages:

(i) an initiation stage, Ni’ comprising nucleation of a crack

and its extension through a region of general, cyclic plastic
flow ( 1< 1%) ;

(ii) a propagation stage, Np, to which the concepts of linear-

1y elastic fracture mechanics may be applied ( 1= 1%).

In the following work it is tentatively assumed, that the ini-
tiation stage is governed by a Coffin-type relationship

N, = (o/a sﬁax)m (3)

If Eq.(3) is regarded as a damage criterion [4], m and D are
material parameters. If, contrary to this interpretation, Eq.
(3) results from the integration of a crack-growth relation
[5], D will also depend on the initial and the final crack
length. The choice of the former and the duration of the nuc-
leation stage then remain undetermined.

Consider in particular a spherical cavity in g linearly elas-
tic-perfectly plastic matrix subject to a remotely applied
uniaxial alternating stress. If the stress range exceeds the
shake-down range, a region of repeated plastic flow will
spread from the equator of the sphere. Using a finite-element
computer program for the solution of this axisymmetric, elas-
tic-plastic boundary-value problem, plastic strains at point

A of Fig.2 have been calculated. The hysteresis loop in Fig.2
shows the axial plastic strain as a function of applied stress,

and Fig.3 illustrates the accumulation of equivalent plastic
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strain. Oy and Ey =0Y/E denote y%elé stres§ and yie .
strain respectively. Poisson’s ratio is 0.3 in the presen
example. . .

The size of the initiation region is 1™ =0.083 a, which is
obtained from Eq.(2) with a =2.05 and y =2/m. Assuming E¥ =
= 0.0025, m=2 and D=1, and substituting the axial plastic

strain range at A into Eq.(3)yields a duration of the initia-
tion stage versus applied stress range as depicted in Fig. 4.

Crack propagation.

The existence of a threshold-stress-intensity range, AKth'
below which crack growth does not occur, has been established
by several authors 6—8}. Furthermore crack-propagation léws
including this feature have been suggested [8,9]. In particu-
lar, using a COD-approach, Donahue et al. | 9| arrived at
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Integration of Eq.(4) from the initial crack length 1*, given

by Eq.(2), to the critical crack length, corresponding to the

fracture toughness KC, results in

A V.V (5)
-2

b s (S/Sth)2—1

where
s = Ao, /oy » = K /8Ky
Sip = Jw/a/B A= Kmax/AK’
- = (AKﬂ/%Yﬁ/n N, = 1/8Y28§

1/6° = 1/v3- 1/(ca)?
Application of Eq.(5) to crack growth from a spher?cal cavity
under pulsating tension (A =1) yields the propagation curve
of Fig.4, if the following numerical values are adopted:

-3/2
a = 100 um K, = 50 Mim o
-2 _ =
oy = 500 MNm AKyy = 5 MNm
- 0.0025
£y 0.00

The radius of a cavity in the shape of a sphere or a circular
cylinder corresponding to écth_= Oy 1s giveninTable 1 for
values of Oy and AKth typical of steel.
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ablas 1. Cavity radii (um) corresnonding o =

Fig.4. S-N-curves for initiation and propagation.
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The validity of continuum models, when the inclucion size be-— 9
> 4 —_
comes of the order of a few microns, as well asg (o applicabi- 52 " - o :E
lity of linearly elastic fracture mechanics to st»>3s ranges o° 0 ‘E =
in excess of the yield stress, are matters open to discussion. f; —Z-
Fatigue tests on steel containing natural inclusions are pre- .
' - (@]
sently undertaken with a view to investigating scue of the ! o' e
assumptions and predictions of the foregoing anai ;sis. ' 3
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Flé.}. Equivalent plastic strain at A.
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