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Introduction

One of the basic assumptions behind the applications of
linear elastic fracture mechanics to elastic-plastic materials
is that plastic deformation at the crack tip is governed by the
intensity of the stress singularity, i.e. the stress intensity
factor KI . For this to be true the plastic zone size has to
be small compared to other geometric dimensions of the problem
as e.g. crack length.

The extent, 2rp , of the plastic zone is approximately
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2rp = %F (Yl) for plane strain, where Y is yield strength.

A requirement of a maximum allowable KI’ €e8e
1
J2e5
of Plane Strain Fracture Toughness, thus guarantees that plastic

K. < Y/a as in the ASTM - Tentative Methods for Testing

I

zone size is much smaller than crack length.

However, the application of LEMM to elastic-plastic
materials requires that also the form of the plastic zone and
the state of stress and strain at the crack tip is determined
by KI . If this is true the elastic-plastic crack problem can
be solved using a boundary layer (v.1.) approach, [11].

In the present investigation the elastic-plastic problem
has been solved for cracks in different types of specimens using
the actual boundary conditions instead of the above approach.
The solution is restricted to one linearly-elastic-ideally
plastic material obeying von. Mises flow rule.

It is then found that the b.l. results for the plastic
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itate do not agree with the results obtained usine the actual
boundary conditions, In oriop to 23t agreement on. has to add
50 the boundary stresses in the b.1, case the not-singular
term of +the X-direction strais, whieh is in a larse region at
g g at
‘e crack tip independent of x , The magnitude o this Serm

is F - e e . : 5
found from the FENM-solution for the actual geometry,

rinite element method and element model

4 FEM-program rfor incrermental treatment of elastic-
plastic structures loaded in plane strain has been developed
[27. The Progranm is basad on an elastic-plastic constitutive
Hatrix obtained through inversion of Prandtl-Reuss equations
Tor a material obeying von Mises flow rule, [3]. 'riangular,
constant strain elements are used. ror symmetry reasons only
“he marked parts of the uuecimens in fig. 1 has to be treated.
In all cases the Fill-representation shown in fig, 2 was used
for the region close to the crack tip. The region inside
ry, = 0.024 a ig composed of 48 elements, The region
0.024 a < r < 0,8 a contains 375 elements (degrees of freedom
476). Kbout 100 elements ire used to form the remaining parts
of the Specimens, Loading is incremental and at most one
element is plasticized at each load increment, further the
load increments mst not be larger than corresponding to
T max = 0.01 v/a . This gZives a better than 0.5% correspond-
ence between values of effective stress and effective plastic
strain determined this way and the stress-strain curve of
fhe material, The computations were made on an IEM 360/175
and each loagd increment required a computing time of 6.3 sec.

he numb i
aumber of load increments was about 200

Jumerical results

The specimens studied are characterized by the

dimensionless parameters g =2,0 , v =0,3, and % = 400.0 ,

In all cases yielding begins in the element just above the
)4

crack tip (b in fig. 2). This cccurs at the values of Ky

given in table 1 where KI is determined according to [4] -
[6]. Mean values of stress obtained from the analytic solution
by integration over an area corrsponding to the elements in

fig. 2 show that the mentioned element should yield first and

at KI = 0,174 Y./a.
In fig. 3 the obtained plastic zones are compared for

the different specimens and for load levels below the highest
allowable for small scale yielding, according to ASTM, viz.
KI = 0.6 Y./a . Results are also given for the b.l. solution.

Length coordinates x and y are normalized with the charac-

teristic length parameter (¢%) .
The variation of displacement in the first nodal point

behind the crack front, i.e. point k in fig. 2, is shown as

a function of load in fig., 4. The coordinates of point k are

x ==-0,006 a , y =0, Fig. 5 shows the stress Uy in the

first nodal point in front of the crack (x = 0.006 a , y = O

or point 1 1in fig. 2) as a function of K; . Fig. 6 shows

the effective plastic strain in the first plasticized element

as a function of KI .
The case is also studied when to the boundary conditions

of the b.l. solution is added the non-singular term of the

x-direction stress, T _ = - 58.93.107° KI/JE“, of the center-

cracked specimen. Corresponding results are given in fig, 4-6

as circles and in table 1. These results are to be compared

with results for the center-cracked specimen. In fig. 7 also
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the plastic zone sizes at KI = 0.6 Y,/a' have been compared

v
for these two cases.
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Table 1

Problem

KI Ref,
) S
Center cracked specimen 0.151 Y./a' (6] 3
Double edge cracked specimen 0.153% v./a [5] z3
b 3
Bend specimen 0.166 YJ/a (4] :
)
Compact tension specimen 0.170 YJ/a' [4] 8 :
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