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INTRODUCTION

In this paper, two examples of large geometry change
problems are discussed. The large geometry change analy-
sis is carried out numerically by the finite element
method and the stress-strain curve used in the analysis
is a power-law hardening one.

At first, the tensile problem of the perforated Al
strip is analyzed and the load-displacement curve is ob-
tained. Then, the progressive blunting in crack tips and
the plastic zone growth ahead of the crack are described
for the doubly edge-cracked steel strip. Also, the state
of stress ahead of the crack and the relation between the
crack opening displacement and the strain of the crack

tip element are shown.

LARGE GEOMETRY CHYANGE ANALYSIS BY THE FINITE ELEMENT

METHOD
The incremental stiffness equation for the large
geometry change analysis is derived from Hill's equationl)

as follows (Fig. 1)
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» where V is the current volume of the body at time t,

S is the current surface, Zi is the unit outward normal

to the current surface, X; is the current coordinates,cid[
is the increment of displacement and dsg is the incre-
ment of nominal stress, that is, Lagrange's stress.

In the two-dimensional analysis, the triangsular ele-
ment of constant stress is used. From equation (1), the
shave function of the triangular element and the equili-
brium of nodal forces at time C, the following incremental

e€quation is obtained.

{dx }= ( [%o]* [7%/]*[%2] ) {du} (2)
, Where [%o] , [él] and [ﬁz] are the ordinary stiffness

matrix, the initial stress stiffness matrix and the geo-
netric stiffness matrix, respectively. {dx} and {du}are
the increments of nodal forces and nodal displacements

and Lix}.is given in the form of nominal tractions. Using
equation (2), the large seometry change analysis is carried

out by the incremental method.

RESULTS AND DISCUSSIONS

TENSTILE PROBLEM OF THE PERFORATED ALUMIiUM STRIPQ)

The ~eometry of the specimen is siown in Fir. 2 and

the stress-strain curve of the type, g/EY = { o//dy)n
is used in the plastic range. The mechanical properties
are as folilows:

foung's modulus E =7200 Kg/mmz, Poisson's ratio 1 =0.3

‘niaxial yield stress Cﬁz=1.3 kf{/mm2

lardening exponent n =5

The analysis is carried out as a plane-stress problem.

Only the one quadrant of the specimen is analyzed due to
the symmetry and the nodal breakdown is abbreviated on
account of limited space. The load condition is the type
of prescribed uniform displacement. The load-displacement
curves by the finite element method and the experiment are
shown in Fig. 2 and the agreement is fairly well.

[SNSILE PROBLEM OF THE DOUBLY EDGE-CRACKED STEEL STRIP

The geometry of the specimen is illustrated in Fig. 3.

The mechanical properties are as follows:
Young's modulus E =21000 kg/mmz, Poisson's ratio P =0.3
Uniaxial yield stress Gy =40.6 kg/mn?
Hardening exponent 7 =4
The analysis is carried out as a plane-strain problem.
The load condition is the type of prescribed uniform
stress.

The progressive blunting in sharp and smooth crack
tips is shown in Fir~. 4. From this figure, the geometry
changes near the crack tip cannot be disregarded at high
stress level. Fir. 5 shows tune variation of the root radi-
us at the crack tip witn increasing net stress. The
plastic zone srowth ahead of the crack is illustrated in
Fig. 6 and the constraint factors calculated by the finite
element method are smaller than those by the s8lip line theo-
ry. The state of stress dg'ahead of the crack is described
in rig. 7. 1In the elastic-plastic and fully-plastic cases,
the stress d} nave a peak in tae vicinity of x=6.6. At
last, the relatioa between the crack opening displacement
UV and the strain 85 of the crack tip element is shown in

Fig. 8. From this figure, the crack opening dispiacement Y

I = 912
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Seems to correspond to the strain 85 of the crack tip ele-

ment uniquely,
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