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Summary
A mechanical model of fatigue crack propagation is proposed. It hypothesizes
that damage due to strain cycling of the material at a crack tip causes propaga-
tion. Manson-Coffin’s strain cycle fatigue law was used as failure criterion and
Miner’s law was used for damage accumulation. The proposed theory correlates
surprisingly well with data for 2024-T351 Al and 4340 fully annealed steel.
Strains at a crack tip were measured by the moire optical interference method.
The strain at a crack tip was proportional to 4K*. The results of strain measure-
ments were used to calculate crack propagation rate.

Introduction

In recent years, fatigue crack propagation has been investigated exten-
sively from crack length measurements on the specimen surface [1-14]
and from striation studies on fracture surfaces [14-17]. Paris, Gomez and
Anderson [4] have proposed a correlation of crack propagation rate with
stress intensity factor. Emphasizing the damage caused by cumulative
cyclic strains at a crack tip, Liu [5, 8] derived a crack propagation rate
for a centrally cracked plate, which is proportional to the plastic zone
size, rp, and (Ag’a) where AG is the applied stress range, and ‘a’ the
half crack length. The quantity (AG*a) is the square of stress intensity
factor range, AK*, for a cracked infinite plate.

Paris and Erdogan [6] found from experimental data that propagation
rate is proportional to AK* for a number of materials. The fourth power
relation was justified by the consideration of the energy absorption
within the entire plastic zone [9]. Ever since, the fourth power relation
has been observed by a number of investigators. Liu |8] has pointed out
that localized necking at a crack tip may lead to an exponent larger than
2. McClintock [11] has derived the fourth power relation from a model that
includes a length factor of the microstructure of a material. Rice [12]
derived the fourth power relation from a rigid plastic strip model, which
assumes that plastic deformation is limited to a strip of materials ahead
of a crack tip. A realistic physical explanation for Rice’s rigid-plastic
strip model is the necking model proposed by Liu [8].

More recently Lehr and Liu [13] have proposed a simple phenomeno-
logical model of fatigue crack propagation. It assumes that crack propa-
gation is caused by cumulative damage due to strain cycling of the
material at a crack tip. With Miner’s linear cumulative damage law and
Manson and Coffin’s strain cycling fatigue law, a fatigue crack propaga-
tion rate was calculated.
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The model is based on the assumption that damage is cauged by cyclic
straining of the material. During recent years, numerous investigations

plastic strain causes high dislocation density and sub-grain structures,
hence strain hardening, and that repeated plastic deformation causes
fissures and microcracks in crystalline materials. Such damages to a

‘plastic blunting process’ proposed by Laird and Smith [16] associates
Striation formation with plastic deformation at a crack tip. If all of the
length parameters, such as Burgers vector etc., associated with the
deformation process are small in comparison with the size of incremental

T351 Al specimens were measured using the moire method. The crack
Propagation rates in these two materials are related to their cyclic
fracture ductilities,

The strain field along the crack line and ahead of a crack tip can be
written as

S/fx = (r/rp)ﬂ @

where €y is the yield strain of the material; r the distance from the crack
tip; and rp the plastic zone size. We shall discuss the significance of
€y and r, in more detaj] later. It can be shown that fp is proportional to
K* if the applied stress is low compared with oyp. [8]. Therefore Equation
(1) gives a relation between the strain field and the applied stress. For
higher applied Stresses, 3 may vary.
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Let us assume that the cyclic life for strain controlled fatigue, ¥, ,
is given by
Ny = Qe/my''= @

where Ae is total strain range, and M and z are constants. Equation (2)
is similar to Manson-Coffin’s strain controlled fatigue law, (22, 23, 24],

law.
For the material at a distance r; away from the crack tip, the strain
range is

Ae = ¢y (5/1,)# 3)
For this strain range, the cyclic life is
Ni = (e /MY"%(r, /1) P2 4)

Since the material at I; experiences the strain cycle only once, the
cycle ratio is

1
= )

According to Miner’s cumulative damage law (25] failure occurs when

S A ®6)

where ¢ is the total number of cycles experienced by the material at a
fixed point after it enters rp. When the applied stress is very low, r, is
small in comparison with other dimensions of the specimen. Therefore
the stress intensity factor is essentially constant after the material at a
fixed point enters Tp, and it is reasonable to expect that the crack incre-
ment per cycle, Ar, is essentially constant during this period of time.
Thus

t= = )

Multiplying Equation (6) by Ar;, one obtaj ns,

da

¢ M \¥* L (1 \"B/z Ar.
@ A () £ () ®
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For a given set of values of 3, z and r,, the sum is a constant. If the
increment is small and /; is a smooth function of r, Equation (8) can be

e () [ .
daN €y Tp p

After integration, it becomes

da (M)‘/z p

av &) 1-PB/z

approximated by

(10)

provided (1 - B8/2)>0. If (1 - B/2)<0, the integral does not converge.

In this case the summation expression, Equation (8), can be used but the
sum does not converge to a given value. As it was pointed out da/dN is
Ar,, therefore, the value of Ar; for the sum has to be adjusted so that
Equation (8) is satisfied. In this case for a given set of values of M,

€ B, z and r,, the sum is a constant. Both the integral and the sum
are very sensitive to the quantity (1 - 8/z). Both 8 and z have values

very close to each other, and neither 8 nor z can be determined accurately.

Thus we shall write

da M 1/z
=y (;) (11)

where y is a proportional constant. The expression indicates that crack
propagation rate is proportional to r, and the quantity (M/eY)\"'. If the
relationship between r, and stress intensity factor range, AK, is known,
da/dN can be expressed in terms of AK.

Examining the model closely, one concludes that da/dNV is proportional
to rp, because of the application of the continuum model and the strain
field given by Equation (1); and da/dN is proportional to (M/eY)'/’
because of the choice of Manson-Coffin’s law for fatigue damage and
Miner’s law for damage accumulation.

The proposed model assumes a strain field as given by Equation (3).
The strain range is given in terms of the normalized coordinate (r/rp).
As a crack propagates, the material within an increment Ar, should ex-
perience the same stress and strain histories, if Ar/r, has the same
value. Consequently a continuum model should predict that da/dN is

proportional to r,, regardless of the choices of fatigue damage law and the

law for damage accumulation.
The above result is contingent upon the assumption that the length

parameters of deformation process and crack growth process are small
in comparison with i ncremental crack length, so that a continuum model
is applicable. McClintock [11] has shown that if a microstructural length,
which is pertinent to crack propagation, is comparable to the size of
incremental crack growth, da/dN is proportional to AK*.
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Equation (11) indicates that da/dV is proportional to (M/ey, )"* . The
quantity M is the strain range corresponding to a cyclic life Ny = 1. It is
a measure of the capability of a material to sustain cyclic deformation.
If one accepts the crack propagation model based on cumulative damage
caused by cyclic straining, it is reasonable to expect that da/dNV is
related to the quantity (M/ey). The quantity M is normalized by €y
because of the strain field given by Equation (1). The specific relation
between da/dN and (M /e ) is derived from Miner’s cumulative damage
law. For example, if one wishes to emphasize the damage incurred by
cycles of high strain range, i.e. the strain cycles when the point is very
close to the crack tip, and assumes,

Sy -1 (12)

as the condition of failure, one concludes that da/dN is proportional to
(M/EY)”‘ . Therefore the specific relation between da/dN and (M/¢ v
depends upon the choice of a specific cumulative damage law.

It can be concluded that da/dN is proportional to r,, because of the
application of the continuum model and the strain field given by Equation
(3); and da/dN is proportional to (/e )"* because of the application of
Manson-Coffin’s law for fatigue damage and Miner’s law for damage
accumulation.

Let us examine the significance of €, and r, in Equation (3) which
can be written in the form

YT 8
de=r g (r) (13)

The quantity €/ (rp)f‘ determines the intensity of a strain field, and
(r)B determines the distribution of the strain field. We have defined &
and rp, as yield strain and the size of plastic zone. But one can choose
any arbitrary high strain ¢;, and corresponding to eY' there is a highly
strained region r,. The significant fact is that the quantity, ‘1"/ (rl;)/3 or
cY/(rp)ﬁ prescribes the strain intensity near a crack tip.

Experimental results

Fatigue crack propagation rate, and static and cyclic tensile properties
were measured on 2024-T351 aluminum alloy and 4340 fully annealed
steel. Strains at crack tips in 2024-T351 Al specimens were measured
to provide the relationship between r, and AK.

Centrally cracked specimens were used for the propagation study.
The specimen width was 4 in. The thicknesses were Y, in for 2024-T351
Aland % in for 4340 steel. The crack propagation data for these two
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min /Omax  Was 0-1
for all tests. The crack propagation data for 2024-T351 aluminum alloy
show three regions of crack Propagation, in the region of high stress

materials are shown in Figs. 1 and 2. The ratio of &

indicated in the figure.
It is unlikely that one could correlate the data in all three regions

using a simple model as proposed in this study, Therefore it is important

In region I, the slope is 5 and the Propagation rate is 4 x 107 i per
cycle or less. When AK was reduced to 1-25 KS1 V(UN), after half a
million cycles, the crack propagated less than 0-0005 in, which gives a
crack propagation rate less than 10~ i per cycle. The Burgers vector
and the atomic size of aluminum are nearly 10~ in which is still two
orders of magnitude smaller than 107 in, However the distance between
dislocation Sources, average distance travelled by dislocations, size of
dislocation network etc. could be important. Therefore 107 in may be
com parable to a structural size which is pertinent to crack growth.

Hence in region I, the proposed continuum model is not applicable.
In the high AK region, i.e. region III, measured propagation rate is

Proportional to AK*. Liu [8] has pointed out that as a crack propagates,

Zone size becomes comparable to the thickness of a plate, there is a
fracture transition from the normal mode to a shear mode, After transition
rp increases rapidly, and deformation be comes highly localized within a
narrow strip because of necking. The size of the Strip is restricted by the
plate thickness. In this case, Rice’s rigid plastic strip model is applic-
able and da/qN becomes proportional to AK*. Therefore in region III,

more, when a specimen reaches region III, its life expectancy is short, con-

Sequently there is less practical interest,
In the intermediate AK region, i.e. region II, da/qV is proportional
to AK**®, In this region a simple strain field as given by Equation 1) is

to the fracture mode transition so that crack propagation is not compli-
cated by a necking process, Consequently, we shall concentrate our
analysis on region II.

Figure 2 shows the data for 4340 fully annealed steel both in region
Il and II. da/qy s proportional to AK **¢ in region II, and it is pro-
portional to AK* in region III. Crack propagation transitions from region
IT to region III take place at 13 XS/ V(IN) and 25 KSI V(N) for 2024-
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T351 Al and 4340 steel specimens respectively. The fracture mode
transitions from normal to shear are completed at 14 KS/ V(N) and 30
KSI \/(IN) for these two materials, but they start much earlier.

In order to correlate experimental data with Equation (11), the
relationship be tween AK and Tp is required. The moire method (26, 27]
was used to measure the strains ahead of crack tips in 2024-T351
aluminum specimens. A two thousand line per inch grille was printed
on the specimen surface using ‘photo resist’. The lines were parallel
to the crack. After printing, the crack was propagated by cyclic loading.
When the crack reached a predetermined length, a moire fringe picture was
taken at the maximum stress level using a reference grille of the same
line density. Strain is simply calculated from ¢ — p/d, where p is the
pitch of the grille, and d is fringe spacing. The results are shown in
Fig. 3. The value of AK for each line is indicated. Two sets of measure-
ments were made on two different specimens for AK at 18 KSI VUN).
These two sets of measurements are close to each other, The slopes
of the lines in a log-log plot vary from —0-50 to —0-54. The average is
~-0-52,

The size of r, was determined by the intersection of these lines with
a strain of 00134 in/in which corresponds with the cyclic yield strength
of the material. Notice that the curve for AK = 18 KSI V(N) tends to
level off and deviate from the straight line. However rp was obtained by
extrapolating the straight line rather than by following the actual curve.
As discussed earlier, r, can be viewed as a fictitious quantity, which
characterizes the strain amplitude within the region of rp. Therefore,
the intersection with the extrapolated straight line should give a better
result,

The values of rp are plotted against AK in Fig. 4. In the lower region
Ty is proportional to AK?. In the upper region r, is proportional to AK®.
The data have a transition point at AK approximately equal to 17 KSI
V(N). The results in Fig. 4 give the following empirical relation

2
rp =130 (—A—K—~) (14)
i Iy
where Oy() is the cyclic yield strength of the material which is 134 x
10° 1b/in?

To determine rp, either the cyclic yield strain €y, or the static yield
strain €y, can be used. The size of the plastically deformed region is
undoubtedly influenced to a great extent by the static yield strain. On
the other hand, the proposed model of crack propagation is based on the
cyclic plastic deformation at a crack tip. Therefore €y Was used to
determine r,.

In Fig. 5, the strain controlled fatigue data on 2024-T351 aluminum
alloy and 4340 fully annealed steel are plotted. The values of # are 0-30
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and 0-47 for 2024-T351 aluminum alloy and 4340 fully annealed steel re-
spectively. Additional data in the high strain region are needed to deter-
mine M more accurately. The slopes of both lines are close to —0-5.

The cyclic stress strain curves for these two materials are shown in
Fig. 6. The cyclic stress strain curve was determined by the tips of the
stable hysteresis loops for cyclic tests at several completely reversed
strain ranges [28]. Each cyclic test gives one point on the diagram. The
total stress range and total strain range are plotted. The cyclic yield
strength and strain are determined by the intersection of the elastic line
with the line in the plastic region. The values of oy, are 134 x 10°
1b/in? and 160 x 10° 1b/in? for 2024-T351 aluminum and 4340 steel re-
spectively. The values of ¢, are 00134 and 0-0053.

With z = -0-5, Equations (11) and (14) lead to

dN M

I¥(e)

If one assumes that Equation (14) is applicable to both the aluminum
alloy and the steel, one can use Equation (15) to calculate crack propa-
gation rate for these two materials. The solid lines in Fig. 7, are crack
propagation data in region II for both 2024-T351 aluminum and 4340
steel. The dashed lines are calculated from Equation (15) with y = 3-6.
The empirical equation for the data, i.e. solid lines, is

da AK 2°6 EY(C) 1:9
5 11[ ] [ 7 (16)

Ty(e)

The correlation is surprisingly good. The maximum deviation between
measured and calculated propagation rates is approximately 50%. The
slopes of the empirical lines are 26 instead of 2. The difference could
be caused by thickness effect and/or by fracture of brittle particles.
Kershaw and Liu [17] have found that striation spacing in a 7075-T6
aluminum sheet was proportional to AK''®, but the surface crack propa-
gation rate was proportional to AK?*®. It was found that the fracture of
brittle particles causes differences between the surface crack propaga-
tion rate and striation spacing. Bates and Clark [14] found that striation

spacing as well as overall crack propagation rate for a number of materials

were proportional to AK?. They used very thick specimens, so that the
propagation rate was not affected by necking. These two factors may
account for the difference between the experimental and the theoretical
exponents on the quantity (AK/O’Y(C)).

The experimental results indicate strongly that the fatigue crack
propagation resistence of a material is related to its cyclic fracture
ductility, i.e. the quantity (M/ey()), which reflects the capability of
a material to sustain cyclic deformation.
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Summary and Conclusions

1. A mechanical model of fatigue crack propagation is proposed. It is
hypothesized that fatigue crack propagation is caused by damage
accumulation due to strain cycling of the material at a crack tip.

2. The fatigue crack propagation resistance of a material is related to
its cyclic fracture ductility, (M/ey(,))-

3. Correlation of the proposed theory with experimental data for
2024-T351 aluminum alloy and 4340 fully annealed steel was surprisingly

good.
4, Strain at a crack tip is porportional to AK? and r™''2
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