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“unmary

¥

"ar an elastic plastic material the stress distribution depends on the history of
sading, The effect of such differences on the commonly used fracture criteria
1@ considered for the case of anti plane strain for the following geometries:
# «rack under normal loading on the crack and at infinity and a wedge shaped
soteh under normal loading at infinity, by calculating the plastic zone size and
‘e crack opening displacement on the alternative assumptions that plasticity is

@nfined to the plane of the crack or that plasticity occurs in fans centred on the
«rack tips which corresponds to monotonic loading.
Introduction
I"or a given geometry and loading of a system of cracks in an elastic
naterial the stress and displacement distribution and hence the condition
for instability is uniquely determined. For an elastic plastic material the
‘tress distribution depends on the history of loading. The present paper
vxamines the effect on the commonly used criteria for failure of varying
“tress distribution for constant extemal loading. Attention is confined
‘o the case of anti plane strain of a non work hardening material as the
“quations may more readily be solved than in the more practically impor-
!«nt cases of plane stress and plane strain and of work hardening material.
I'he stress distribution corresponding to the case of a uniform monotonic
loading of a crack by stresses applied to infinity has been determined by
Hult and McClintock [1], Koskinen [2] and Rice [3] for the cases of a
~rack and of a wedge and for an infinite row of equal and equally spaced
collinear cracks or wedges. Kostrov and Nikitin [4] have done the same
for a crack in which plasticity is confined to its plane. Arthur and Black-
burn [S] extended this to two equal cracks or to an infinite row of equal
cqually spaced parallel or collinear cracks. Kostrov and Nikitin [6] have
#lso considered a more complex case in which the slip in the plane is
related to the cohesive stress. In all cases the crack surfaces are as-
sumed to be stress free. However as the condition for failure involves the
cohesive stresses on the crack tip, Arthur and Blackburn [7], it is impor-
tant to extend the method of solution to include stresses applied on the
surface of the crack.

Solutions are presented here on the alternative assumptions of mono-
fonic loading and plasticity confined to the crack and the results are com-

pared. A material containing a crack under uniform loading on the crack
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and at infinity and a wedge shaped notch loaded at infinity will be con-
sidered.

For anti plane strain of the elastic part of a material the stress may be
expressed in terms of the transverse displacement w perpendicular to the
X, y plane as r,, = u©@w/0x),7,, = u (Ow/dy), where i is the modulus of
rigidity. Thus the complex stress 7 = Ty, + 17,, is a function of z = x + iy.
Two alternative assumptions are made for the plastic region: either plas-
ticity is confined to a plane or the stress is a function of the strain. In
the latter case, which corresponds to monotonic loading, the stress is
constant on straight lines. If the displacement is continuous and the stress
applied to the crack (or in the more general case to the wedge or step) is
constant, these lines pass through the crack tip and the stress is of mag-
nitude k (the yield stress in shear) and acts in a direction perpendicular
to these lines. Thus if z = c is the centre of one of these fans, on the
elastic plastic boundary arg(z — c) + arg 7 is zero, i.e. Im 7(z — ¢) = 0. When
plasticity is confined to the real axis, on the elastic plastic boundary
Im z = 0.

The relationship between z and 7 may thus readily be obtained for any
given loading for which the boundary of 7 and of z or of (z — c)r may be con-
formally mapped onto the real upper half plane by a known conformal map-
ping. As an illustration we consider a crack extending to £ a under normal
loading o at infinity. By symmetry, only a quarter space need be consi-
dered. The boundary’ in the stress plane is a quarter circle which may be
transformed on to the upper half plane by the transformation

_ (k2+02>27.2
- (k‘ .- 72)(72_02)

(see Fig. 1). This particular transformation is chosen such that the points
0, —1 and o transform to 0, 1 and ~. The point k at the tip of the plastic
zone transforms to

2 232
T_ (k*+0%)
(k2_02)2
Then as shown by Kostrov and Nikitin [4] the positive quarter plane in
the z position space is related to the upper half ¢ plane by

z=a\/t

Loaded crack
We consider first a single crack of length 2a between z = + a under a nor-
mal shear stress o at infinity and a normal shear stress — A on the crack.

By symmetry, only the real quarter plane in the z space need be considered.
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I'he boundary of the stress plane is shown in Fig. 1. This is transformed
nto the upper half plane by the following mapping (Kober [8]):

(K71 200+ 0)* WV E = X))+ i(A+ D]* — [V = A3 — i(A+ 1)]* 2
K207+ Y VK = M) +i(0+ NP4 [V~ D) = i(o 1+ M
(k5 + 280 + 0 V(K = A + 1 +D)12* 4 [\ (k2= A2) — i(\ + 7)) 2% } 2.1

(k= 2% fV(t~sec’y)—iy/ttan y}i/= —1/(t —sec?y)+ iy/t tan y}/*
(k= -
K Wt —sec? y)—iy/ttan y}/* 4 |\/(t - sec? y)+ Iy/t tany i/

vhere a = 7/(% m+sin™ A /k) and the mapping is chosen to be such that
v —A and —A—1i/(A* — k*) map on to e, 0 and 1 respectively. T is used to
denote the value of ¢ at the end of the plastic zone where 7 — k. Then
I' sec’y
i A+o

“here y = atan m 2.3)

When plasticity is confined to the plane of the crack z and ¢ are a
luarter plane and a half plane respectively in which the origin and infin-
ity coincide. Thus since t = 1 at the crack tip where z - a, they are re-
Lated by

z = a\/t (24)
I'he length of the plastic zone is

a(T — 1) = a(sec y — 1) (2.5)
I'he crack opening displacement is 2w(a)i.e.

1
SO X2
Imz ,g_z_dz:l’(u_’
T K dt 3
T
xesz}'

Wt sin )’4—\/’(1——ICOSZ}/)‘2/‘x

7
i 2cos o (-1 4 Wiesiny +y(1 - tcos?y)ir®
a

—Wesiny—y/(1-tcos* YI/* dt (2.6)
+i\/tsiny-—\'(l—tcoszy)}z/“ Vit '

If no unloading has occurred and the displacement is continuous the
‘tress is uniform on straight lines through the plastic zone. If the stress
on the crack surface is constant these lines pass through the crack tip
md the stress is perpendicular to these lines, its magnitude being k.
I'hus at the boundary arg 7 + arg(z — a) is zero, i.e. Im 7(z — a) is zero. Also,
on the continuation of the line of the crack, by symmetry 7 is real so that
Im 7(z — a) is zero. On the perpendicular plane through the centre of the
crack 7 is real so that Re 7(z — a) = ar. On the crack itself Re 7 = —\ and
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hence Re 7 (z—a) =—A(z — a). Thus the imaginary part of r(z—a)/\/(t=1) is
specified on the whole of the real axis in the ¢ plane and hence since it

is bounded it is determined except for an arbitrary real constant by the
formula.

(z~a) __a 3 p dr 3 /\(z--a)Jl dr
V-1 7 ) yd-n -0 R ECEDIED

Aa 2z a [ (prNde
TVE-D T =D 7 ) Va0 G-0

2.7

where r is the value of t(p).
With the constant chosen so that the stress is real at the centre of the
crack

(-1 [ (p+Ndr
T+ A— = _lj\/(

- —t
z=a 11 i (2.8)
-1
T+ p tan —\/(t—l)
The length of the plastic zone is
1 siny
° tan {Zz— tan™* m dr
y—
V&~ At
Sl L a"yf fW(1—-r) (rcos?y—1)
a — (2.9)
ak+A) =2 Ay
and the crack opening displacement is
2 [ d
z
Im — —dt 2.10
m i fr = ( )
T

In Figs. 2 and 3 lengths of plastic zone and the crack opening dis-
placement are plotted from equations (2.5) and (2.9) and from equations
(2.6) and (2.10) for various ratios of A/k (the ratio of the stress on the
crack to the yield stress) as a function of ¢/k (the ratio of stress at in-
finity to yield stress).

Wedge shaped notch )
Another case where both solutions may be obtained is for a symmetric

pair of wedge shaped notches of half angle (7/2)—a and depth a in a finite
2/4

Etfect of shape of plastic zone on zone size and crack opening

‘lab under a stress ¢ at infinity. The stress is mapped on the ¢ half plane
Ly
(kw/a +arr/z)27,1r/0¢

) (himle o Tﬂ/a )(T‘n{a _oﬂlu)

1k"/" N (T"/a )2

1{’;/“ __a-rr/a)z

(k7% L 1 rta _ grjeys _ 1 2a/n
R VA Ly = Jotea o | & = o) = - (ke o™y }

3.1
lFor simplicity we treat here only the case of a single notch in a half
pace,
If plasticity is confined to the line of the crack, an appropriate mapping
't the z plane onto the ¢ plane is
¢

1
dt dtsina
z=a+a 3.2
f t¢/1r(t_ 1)*‘“/"’ /! ta[vr(l_t)}—af" ( )
llence the size of the plastic zone is
T d 1
t dtsina
a{f &/ (t_l)i—alw/ft:x/-n(l_t)}—m (3.3)
o

wd the difference in displacement at the apex of the notch is

4 [ 7 dt
I'm /: J tdﬁ,(t_l)i—a/w

] dt sinq
J ﬂ/n(l_t)}—u/w

™ o™yt 1) }dt
i f VICK™/® 4 o ™) — (k™ — 5TV
using ta/-:r(t_l)i—ahr

= - 3.4)

. [2a
T sin {— cot™!
a

dt
t‘/'(l - t)i—ahr
L]
As shown by Hult and McClintock [1] for a single notch and generalised
by Rice [3] for a symmetric pair of notches, in the case of no unloading

the boundary conditions on (z — a)r are the same as for a single crack, so
that

(z—a) _if p dr (3.5
V-t 7 )=ty d-r) ’
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The size of plastic zone is

2a (kﬂja £ arr/a )2k1r/uo,1r/a
22T kg (K™% — ™)

[ {(kﬂ/! 4 a‘lr/u )\/(1 - %) - J[(kﬂ/a oo 0"/“ )2 . % (kﬂ/a + aﬂ/a )Z\}zdlﬂ d
<]

r\/(l- r){ (k""' —gTl= )21'-- (kﬂ'la +ow/a,)2§

—ao

(3.6)
and the difference in displacement at the apex of the notch is
1
2 dz i /o
Tox o J‘ 47 g 208+ 077)

dt 22T 126
T

JTf {(kn/a+ arr/a) \/(1__ ;)—\/[(k" a_'an]u )z _ % (k"’“ +\g"’l" )_nlu.lw e ol
x

A=) (= OV 1&g ) — £ (k™1 - 0™ )7}

1 —o

3.7

In Fig. 4 and 5 respectively the plastic zone size and the crack openi ng
displacement are plotted as functions of the ratio of applied stress to
yield stress o/k for various angles a when calculated from equations
(3.3) and (3.4) and from equations (3.6) and (3.7).

In a previous paper [5] we presented equations for the critical opening
displacement and plastic zone size for the cases of equal collinear and
parallel cracks under a stress at infinity. Computation of these results
has now been completed and there is good agreement between the two
methods in both cases, but space does not allow them to be presented
here.

Conclusions
The methods of Hult and McClintock [1] and Kostrov and Nikitin (4] for

the solution of anti plane strain problems of a non work hardening elastic

plastic material have been extended to more complicated geometries and
loadings including the case of loading on the surface of the crack.

The usual parameters which are considered as critical for failure, the
plastic zone size and crack opening displacement, have been calculated
for a number of geometries and loadings on the alternative assumptions
of plasticity confined to the plane of the crack, or plasticity occurring
in centred fans at the crack tips corresponding to monotonic loading.

As there is no significant qualitative difference in the results, it is
suggested that the effect of prior load history on the criterion for failure

is not significant and that it is not inappropriate to take into account the
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