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Summary
'he stress intensity magnification factor in surface-flawed tension plates is as-
<umed to be decomposable in three parts. The first part of the magnification fac-
for 1s due to the free front surface, the second part is caused by the free back
urtace, and the third part is due to the ductility of the material. The first two
varts of the magnification factor are derived from published results and the plas-
‘'ity magnification is based on a modified Dugdale yield zone surrounding a
tenny-shaped crack in an infinite solid composed of strain hardening material.
\ “iemi-elliptical shape surface flaw is replaced by an equivalent penny-shaped
rack with the same stress intensity factor and the corresponding plasticity mag-
ification factor is established by estimating the effective crack extension based
'n the Dugdale model. A procedure for incorporating the effect of through-the-
‘hickness yielding is also proposed. The combined magnification factor is applied
' cvaluate fracture toughness test results on surface-flawed steel and titanium
vlates. Also derived is the stress intensity magnification factor due to plasticity
' a4 notched round bar tension specimen. This magnification factor is used to
vvaluate the fracture toughness of the same steel alloy mentioned above and the
results obtained from the two types of specimens are compared.

Introduction

l.inear fracture mechanics has gained substantial acceptance in industry
furing the last decade. Increasing numbers of hardwares are now being
‘lesigned for fracture prevention and for limited service life where the
theory of linear fracture mechanics is used to predict the amount of flaw-
wrowth [1]. This wide application has not only increased the need for
‘'ress intensity factor solutions for cracks of realistic geometries but
@lso the need to extend the theory of linear fracture mechanics to struc-
tural materials which are somewhat ductile.

One such problem which often confronts a designer of pressure vessels
i the problem of deep surface flaws where an analytic solution does not
cxist for this three-dimensional problem in elasticity. To complicate the
matter, the large ductility present in high toughness materials requires
in elastic-plastic analysis of this problem. A recent paper by Ayres [2]
presents some numerical results of a surface-flawed tension plate loaded
close to net-section yield stress but further refinement of such numerical
analysis is necessary before a fracture criterion can be derived from such
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solution. Thus, the elastic-plastic solution to the problem of deep surface
flaw are not immediately in sight at this time.

The object of this paper is to provide an estimate of the stress inten-
sity magnification factor in a deep surface-flawed tension plate composed
of somewhat ductile material. Also derived are the plasticity correction
factor for a notched round-bar specimen which is often used to evaluate
plane strain fracture toughness.

Surface-flawed tension plate

Consider a semi-elliptical surface flaw in a tension plate of finite thick-
ness, ¢, as shown in Fig. 1 where a and c represent the semi- minor and
semi-major diameters of the ellipse, respectively, and ¢ is the applied
uniaxial tension load.

Although no elasticity solution exists for the semi-elliptic surface-
flawed tension plate, such solution does exist for an elliptical flaw em-
bedded in an infinite solid and subjected to uniaxial tension. The maximum
stress intensity factor for the embedded elliptical flaw can be expressed

as (3]

K;=\Vrmo \/_5 (1a)
@
/2 i a2 ”
where ¢ =f [1+ —— sin® 0] (7} (1b)
c

[

This maximum stress intensity factor is located on the minor axis of the
ellipse.

When the elliptical flaw is halved by a free front surface containing the
major axis of the ellipse, then equation 1 must be modified to account for
the free surface effect. In addition, available result on the semi-infinite
solid with a semi-circular surface flaw [4] leads one to believe that the
location of maximum stress intensity factor may shift away from the minor
axis to the major axis of the semi-elliptical flaw. Countering this effect
is the compounding stress intensity factor magnification due to the free
back surface in a finite-thickness plate where the stress intensity factor
closest to the free back surface is most affected. As a result, the location
of maximum stress intensity factor will probably remain on the minor axis
of the semi-elliptical surface flaw. Representing the compounded magnifi-
cation due to the free front and back surface as M, , equation 1 can be re-
written for surface-flawed tension plates as

Ky =M, 7o Y2 )

D
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Vhen equation 2 is used to evaluate fracture in somewhat ductile mate-
tial, a further correction due to plasticity must be made. This magnification
+a proposed by Irwin [3] is obtained by replacing the complete elliptical
integral of the second kind, @, in equations 1 or 2 by

VO = [qﬂ - 0‘212( 7 )2]‘/2 3)

Oyield

vhere gyiela  is the yield stress of the material.

ltwin’s ductility correction factor works well for moderate values of 0/0yiq
but for 0/oyieq  values approaching or exceeding unity, experimental results
‘how that the apparent fracture toughness computed by the use of equations
" und 3 becomes suppressed. As a result, the various fracture toughness
‘ata obtained by different specimen geometries for the same material can
‘o longer be correlated. A new model of plastic yielding in a surface flaw
“mch provides a stress intensity factor magnification of M, and which fur-
ther modifies equation 2 is thus proposed here as follows:

K, :M,M,,\/;a‘/?a )
[¢

!n the following, each of the magnification factors will be discussed in
detail,

I'ree surface magnification

the magnification due to free front surface has been determined for two
‘xtreme cases. For a semi-circular flaw or a/2¢ = 0'5, this value is ap-

proximately 1-03 [4]. For a single edge-flawed semi-infinite plane or

+2¢ =0, several investigators [5, 6] have determined this value to be
‘pproximately 1-12. Since an analytical solution is not available for

' /2¢ <05, the following interpolation between the two extreme cases
+ proposed for representing the effect of the free front surface, M, *.

2
M‘*=1+0-12(1 -i) 5)
2c
l.ess is known about the stress intensity factor magnification due to the

tice back surface. An analogous problem which involves two coplanar paral-
‘el elliptical flaws in an infinite solid subjected to uniaxial tension has
'~en solved by the approximate method of point collocation [7]. By bisect-
tnv. this infinite solid at the plane of symmetry which separates the two
oplanar flaws, an approximate solution to the problem of an embedded el-
‘iptical flaw near a surface with vanishing shear traction but with residual
rormal tractions is obtained. The effect of the residual normal tractions

¢ to underestimate the magnification factor for a/t > 0:7 as shown by simi-
#tr comparison in plane problems involving the tangent formula and a more
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exact analysis [8]. This estimated stress intensity factor magnification,
due to the free back surface, is referred to as M, *.

Assuming no coupling between the magnification factors of the free front
and back surfaces, the product of these two factors, M,* and M), *, then yield
M. ,the elastic magnification factor of the surface-flawed tension plate as
shown in Fig. 2.

Fig. 2 shows that the stress intensity factor magnification, M, , reaches
an infinite value as a/t - 1. For a perfectly brittle material, this result is
obviously correct but in the presence of plastic yielding an infinite mag-
nification cannot be attained. In order to remove this infinite magnification;
it is assumed that the elastic magnification factor, M,, cannot increase
any more, once the plastic yield zone penetrates the thickness of the plate
and creates an effective yield hinge. These trucation points of M, are
shown by dashed curves in Fig. 2 for an elastic-perfectly plastic material.
Details of the procedure for establishing loads at which the plastic yield
zones reach the free back surface are described in the following section.

Plasticity magnification

tic stress field at the crack tip. As mentioned previously, there exists
considerable experimental data which support Irwin’s simple plasticity
magnification for moderate values of applied stress to yield stress ratio.

The method of plasticity correction proposed here is similar to that of
Irwin except that a Dugdale model of extended yield zone is used to esti-
mate the amount of effective crack length [9]. This Dugdale model of ex-
tended yield zone has been studied for plane problems by Goodier and
Field [10] and in considerable detail by Hahn et al. [11]. Also the Dugdale
model in a penny-shaped crack was studied by Keer and Mura [12].

The Dugdale model for an elliptical crack poses analytical difficulties
and therefore the elliptical crack was first replaced by an equivalent benny
shaped crack with the same stress intensity factor. The radius of such
penny-shaped crack is represented by

-y

A modified Dugdale model for this equivalent penny-shaped crack with
an extended yield zone of linearly varying stress distribution as shown in
the inserted schematics of Fig. 3 is then solved. A brief description of
this solution is given in Appendix I and therefore only the final results
will be discussed in the following.
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Consider a cylindrical coordinate system (r, 0, z) with its origin located
it the center of the equivalent penny-shaped crack. After removing the
fress singularity at the crack tip, the extended crack radius, d, of a
Vipdale model can be determined by the following relation.

1=ﬁ+ ___m__[ﬁﬁ_f+sin—xﬁl (7a)
i d? 2(1 _ é) d a&? 2 . d —
d .'u}{;,_ﬁr‘
vhere o, is the maximum uniaxial tensile stress p;;scribed
it the physical crack tipof r= a
m-1 _ Cyield (7b)
aD

this relation is shown graphically in a more convenient form of b/d versus
"“view  With m as a parameter in Fig. 3.
'he next step is to determine the crack opening displacement (COD) at
e center (r = 0) of this modified Dugdale crack for the purpose of estab-
+hing the crack radius of an equivalent elastic crack to this modified
Dupdale crack. The COD close to the physical crack tip of r = a as used
by Wells was not used since experimental evidences in analogous two-
fimensional problems showed that the COD at the center of the Dugdale
rick agreed better with the measured COD [14]. This COD at the center
'l the equivalent elastic penny-shaped crack is proportional to the square
't its stress intensity factor and therefore the magnification factor due to
pilustic yielding can now be expressed as

1 b
Wz _ w (0,0)] Dugdale - Tvield . COS d + [g _ ayield ([_1)2 _ 1] (8)
w (0,0) | grastic o(l — m) b o(l-m)N\b

For ideally plastic material or for m — 0, the COD discussed above co-
ncides with the known results of Keer et al. [12]. For sake of comparison,
vlasticity magnification factors are computed and listed together with cor-
csponding M, values obtained from equations 3 and 8 for ideally plastic

naterial or m = 0 and 0/0yiela =09,

Eq. 8 Eq. 3
I’enny-shaped crack Mp =1-115 Mp =1-035
I"lliptical crack a/2c = 1 Mp = 1-115 Mp =1-050

\+ shown above, the new plasticity magnification factor as computed above
"t fipproximately 6~7% larger than the corresponding values obtained by
“quation 3. Values of Mp for various m values are shown in Fig. 4.
When the plastic yield zone penetrates the thickness of the plate, some
odification must be made to account for this penetration. Although the
© OD will continue to increase with increasing load, the combined stress
4/5
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intensity magnification factor will reach a maximum value due to excess
plastic yielding which will not contribute to the elastic strain energy re-
lease rate. In order to account for the topping of the magnification factor,
it is proposed that the free surface effect be truncated at values when the
modified Dugdale yield zone penetrates the thickness of the plate. The
relation for this condition can be easily obtained by the following equa-
tion which is derived on geometric considerations only.

d=b+t-a 9)

This equation together with equations 6 and 7 must be used to solve for
the load ratio, 0/0 yiela, Where such penetration occurs. The dashed curves
in Fig. 2 show the relation between a/¢, 0/0yiend, and a/2c for elastic,
ideally plastic material or m = 0. For strain hardening material or m > 0,
the dashed curves will shift toward the right in Fig. 2 or toward larger
values of M, .

Application of magnification factor

The stress intensity magnification factor for deep surface flaw as derived
above was used in evaluating fracture toughness data involving Ladish
D6A-C steel and 5 A1-2-5 Sn (ELI) titanium alloy [15, 16]. Figs. 5 and 6
show the fracture toughness results evaluated by the conventional proce-
dure together with the proposed magnification factors. Definite improve-
ment in data correlation is shown in these figures.

These magnification factors were also used to evaluate some unpublished

data involving surface-flawed tension plates machined from 5 Al-2'5 Sn
(ELD titanium alloy and tested to fracture at room temperature.* Two of
the ten specimens were loaded beyond the 0:2% offset yield strength of the
material before fracture. For such data, where the plastic yield zone ob-

viously penetrated through the net section of the specimen, the elastic mag.
nification of M, at a/t = 0 in Fig. 3 was used. For the plasticity magnifica-

tion factor of Mp, the yield stress Oyield, was equated to the applied stress
of o when o exceeds the yield strength of the material in computing the
Strain hardening coefficient of m. Again the data evaluated by the proce-
dure described in this paper showed definite improvement over the data
evaluated by the conventional procedure.

Magnification in a notched round bar tension specimen
The magnification factor of stress intensity factor in a notched round bar
can also be represented in a form similar to equation 4 as

Ky = M, Mp\/{z) o \/B (10)

* Test data from Space Branch, The Boeing Company, Seattle, Washington.
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vhere on is the net area stress in the notched round bar

B is the shank diameter of the bar
I'he clastic magnification factor, M,, has been estimated by others [8, 17|
ind therefore will not be elaborated here. The plasticity magnification, M,,
vas estimated by applying Wells COD concept to this problem [13], since
here exists no convenient reference axis in an external notch with a
Dugdale model of extended yield zone. Conceptually, this approach is
«imilar to the method used in the surface-flawed tension plate with the
nly difference being the position at which the COD was considered. In
the notched round bar with a Dugdale model of extended yield zone, the
¢'OD at the physical crack tip, r = b, wl, s, z-o,Was then used to es-
tablish an equivalent elastic circumferential notch which is deeper than
the physical notch. The stress intensity factor of this equivalent notched
tound bar for an ideally plastic material is

n
KIZ = 1 Voyieldw]r:b.zzo (11)
vhere it is the shear modulus of the material
v is the Poisson’s ratio of the material
I'he plasticity magnification factor can then be represented as
K
Mp.= I]Eq.n (12)
vm 3
== O,
53 oV

I'his relation is shown in Fig. 7 for an ideally plastic material or m = O.
lhese magnification factors were then used to evaluate the experimental

fata of notched round bars machined out of the same Ladish D6A-C steel

used for the surface-flawed specimens described previously [15]. The

wveraged values of the test results for the fifteen specimens are shown

in the following:

B = 0-501 in

b =0-333 in notch diameter after fatigue loading

on = 1565 ksi

M, = 0-240 for g = 0665 (Ref. 8)

Mp=106 ot — 2 o G463 (Fig. 7)
Tyield

I'he resultant fracture toughness computed by equation 10 is
Kp. =500 ksi+/in
4,7
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This value compares favorably with the average fracture toughness of
C

)-8 ksi determined by the data of surface-flawed specimens illustrated
in Fig, 5,

Conclusions

Stress intensity magnification factors for surface-flawed tension plate
and notched round tension bar have been derived. In the limited appli-

cations cited here the proposed magnification factors show definite im-
pProvement over the conventional correction factors.

Acknowledgement

References

1, TIFFANY, C. F. and MASTERS, J. N. ‘Applied fracture mechanics’. Amer.
Soc. Testing Materials, STP381, . pp. 249-278, June, 1964,

2. AYRES, D. J. ‘A numerical procedure for calculating stress and deforma-
tion near a sijt in a three-dimensional elastic-plastic solid’. NASA Tech.
Memo. X-52440, 1968.

3. IRWIN, G. R. ‘Crack extension force for a part-through crack in a plate’.

J. of Applied Mechanics, Trans. of ASME, vol. 29, Series E, pp. 651-654,
DecemUEr, 1962.

4. SMITH, F. W., EMERY, A. F. and KOBAYASHI, A. S. ‘Stress intensity fac-
tors for Semi-circular cracks, part II’. J. of Applied Mechanics, Trans. of
ASME, vol. 34, Series E, no. 4, pp. 952-959, December, 1967.

S. WIGGLESWORTH, L. A. ‘Stress distribution in a notched plate’. Mathema-
tika, vol. 4, PP. 76-96,1957.

6. BOWIE, O. L. ‘Rectangular tensile sheet with symmetric edge cracks’.

J. of Applied Mechanics, Trans. of ASME, vol. 31, Series E, no. 2, pp.
208-212, June, 1964.

Sity factor for an embedded elliptical crack near two parallel free surfaces’.
Int. J. of Fracture, vol. 1, no. 2, pp. 81-95, 1965.

8. PARIS, p. C. and SIH, G. C. ‘Stress analysis of cracks’. Amer. Soc. Testing
Materials, STP381, pp. 30-81, June, 1964.

9. DUGI?ALE, D. S. ‘Yielding of steel sheets containing slits’. J. of Mech. and
Physics of Solids, vol. 8, pp. 100-104, 1960.

10. GOODIER, jJ. N. and FIELD, F. A. ‘Plastic energy dissipation in crack
Propagation’. Fracture of Solids, editor Gilman and Drucker, John Wiley, pp.
103-118, 1963.

4/8

Stress intensity magnification factors

! NWOSENFIELD, A., DAI, P. K. and HAHN, G. T. ‘Crack extension and pro-
i’apation under plane stress’. Proc. of Ist Intl. Conf. on Fracture (Sendai),
pp. 223-258, September, 1965,

KEER, L. M. and MURA, T. ‘Stationary crack and discontinuous distribu-
ttons of dislocations’. Proc. of the Ist Intl. Conf. on Fracture (Sendai), pp.
’9-116, September, 1965.

‘1 WELLS, A. A. ‘Application of fracture mechanics at and beyond general

=

vielding’. British Welding J., vol. 81, pp. 563-570, 1963.
KOBAYASHI, A. S., ENGSTROM, W. L. and SIMON, B. R. ‘Crack-opening
displacements and normal strains in centrally-notched plates’. To be published
n J. of Experimental Mechanics.
I'FFANY, C. F. and LORENTZ, P. M. ‘An investigation of low cycle
futigue failures using applied fracture mechanics’. Air Force Materials
l.aboratory Report ML-TDR-64-53, May, 1964.
I'FFANY, C. F., LORENTZ, P. M. and HALL, L. R. ‘Investigation of
plane-strain flaw growth in thick-walled tanks’. NASA CR-54837, February,
1966.
HARRIS, D. O. ‘Stress intensity factors for hollow circumferentially notched
round bars’. J. of Basic. Eng., Trans. of ASME, vol. 89, Series D, no. 1,
pp. 49-54, March, 1967.
- MOSSAKOVSKII, V. I. and RYBKA, M. T. ‘Generalization of the Griffith-
“neddon criterion for the case of a nonhomogeneous body’. PMM, vol. 28,
no. 6, pp. 1277-1286, 1964.

\ppendix I: Solution for modified Dugdale model in a penny-shaped crack
‘onsider a penny-shaped crack embedded in an infinite elastic solid which
s subjected to a uniform tensile stress, o, perpendicular to the plane of
he crack. The normal stress component in the Dugdale model of extended
ield zone is assumed to vary linearly from a maximum value of ¢, at the

“dpe of the physical crack to a minimum value of gyielq at the edge of the
~xtended crack. The origin of a cylindrical coordinate system (r, 6, z) is

wisumed to be located at the center of the crack. Because of symmetry
it 1s sufficient to consider the half-space z = 0 which is subjected to the
nxed boundary conditions of

7rz(r, 0)= 0 for all r (I.1a)

Oz2z(r, 0) = - o 0<r<bp (I.1b)

=oll —m, (r— B)] -0 b<r<d (I.1c)

w(r, 0)=0 d<r<oo 1.1d)

vhere m, = m (1.1e)
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It is easily shown that when the stresses and displacements are ex-
pressed in terms of Hankel transforms, the resulting boundary conditions
for the axisymmetric problem may be written as

u  9F(r,0)
Uzz=m7=—0 0<r<b (123)
=00l —m (t = b)] —0 b<r<d (1.2b)
w(r, 0) = F(r, 0) = 0 d<r< o (I.2c)
where F(r, 2z) =fl//(§) et Jo x§) d&¢ (I.2d)

Following Mossakovskii and Rybka [18] the harmonic function W(x, z)
is defined as

W(x,2) = f l/éé:) sin (¢x) e~t? d¢ (1.3)

Then, by representing J,(r&), & o(r&) and sin &x/& by their Mellin transfor-
mations, we obtain

fgg ©2) ﬁ - 2 x,2) (t.42)
a%fF(r,z) \/r—zr_‘% = Z—Z(x,z) (L4b)
a%fg—j % -z §§ 55 (L4c)

ig_jﬁ_f%ﬁ __ % F(,2) (1.4d)

The preceding transformations illustrate the relationship between the
three-dimensional axisymmetric function F(r, z) and the two-dimensional
function W(x, z). When combined with equations [.2a, [.2b and I.2¢, the
normal stress o(r, 0) and the normal displacement w(r, 0) are completely
defined when the function W(r, 0) has been determined, It is easily shown
that all the stresses and displacements in the three-dimensional body are
defined when the function W(x, z) is defined. However, it is not necessary
to determine W(x, z) for the problem being considered.
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When the boundary conditions are substituted into equations I.4a and
I'1b and the indicated operations performed, we obtain

s aF—2[ - sin“‘d}+ {(14—’51—1))(—
1—1/_5;_; o:‘/r!—aa r %o 2

o [P M[(n . _b\[ & I )
1 _oE 2 ) —
+ sin R a") 3 [(2 sin d) (*\/?7 \r
4b R S S, O _ _,E r? — @? _ 2nb
+ —3— tan m 2r cot p 7 B2 —-—-3 + 7r

d* — b?

r’ —a?

1. (r,0) =

b d*— b*
+3 sin 1 r_z——biz]}] r>d (I.5a)
4(1—1/2)0[2—7 ) & — b’ r);
, = 77 = — ——— — b E|lu,— I.5b
wir, 0) - g l\/d r'+—|d 77 —PE\wg (1.5b)
. o [d* — b?
where u = sin d_z——r’
I'he normal stress will be finite at r = d when
o b? m b b* w o i b]
e g -——t— |2 1 - _Z ,sint2 1.5
o, 1 d? M b [d d? 2 * d the)
211 — =
d
aial — O yield
Oo

\ppendix II: Solution for a Dugdale model in an external circular crack
I'his appendix outlines a procedure for computing the plasticity magnifi-
cation factor for a Dugdale model in infinite elastic solid which contains
n external circular notch in the region of 5< rand z = 0. A constant
load, P, perpendicular to the plane of the notch, is applied to the solid at

-+ 0.

In order to solve this problem with the method presented in Appendix I,
it is necessary to use the correlation between the notch and the die prob-
lem. The elastic problem will be used to illustrate this correlation. The
boundary conditions for the elastic problem are:

w(r, 0) = F(r, 0) = ¢ O0<r<b (I1.1a)

u JF
ou(r,O):Egz-:o b<r

4/11
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Following the procedure outlined in Appendix I, F(r, z) and W(x, z) are
represented by equations 1.2d and L3, r

‘ espectively. Then it is easy to
derive the following transformations:

x

i fF(r,z)rdr W

oy a \/m = o5 (x,2) (I1.2a)
fOF _car oW
) az \/’.sz = — a—x (X,Z) (sz)
fa-u_’ dx 77 P
I hr — = 5 (r,z) (II.2¢c)

0

i mGW x dx mr OF
or ox Vx: =1r? T2 a_z (I1.2d)
¥

When the appropriate bounda

. ry conditions are substituted into the pre-
ceding €quations, we obtain

m_2 €
1—vnm \/b! —r (11.3)

Ozz =

;‘r;lorder to evaluate ¢, the total load applied to the bar is denoted by P,
en

b 27

P:ffaurdedr
0

o

(I1.4a)

_ 4ebu
1oy

Therefore

a5, P (II.5a)
and

P 1

Ozz = —

20b VBT o R

which agrees with the well known results ‘or an external notch.
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The boundary conditions for the Dugdale model are
w(r, 0) = F(r, 0) = ¢ 0<r<a (I1.6a)

oF
0z, (1,0) = 1 _l_LV oz Ovied a<r<b (IL.6b)

-0 b<r (IL.6c)

Substitution of the preceding boundary conditions into equations II.2a and
I1.2b results in

u  OF no 2 € VBT - &' m
- a—z(r,0)= ‘-'[— {"’

+ o, T S —

1 = 1— v \/az — r; yield 2\/3—)——7_1. 2

.- j&@* -1 1 b* =) 1 a2 —¢? }]
__ — I1.7
+ Sin bz o 1.2 2 \/(bz — aZ) (az _ rz) +2 \/—!_zb =g ( )

Consequently the stresses will be finite at r = 0 if
€ + Oyjeld \/b2 —-a* =0 (11.8)
2z

{

Fig. 1. Semi-elliptical surface flaw
in a plate subjected to uniaxial
tension.
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Fig. 6. 5A1-25 Sn (ELI) titanium
at =320° F [16].

PLASTICITY MAGNIFICATION FACTOR M,

o a2 04 06 a8 10

o

APPLIED STRESS RATIO Triera

Fig. 7. Plasticity magnification
factor for notched round tension bar.





