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Ductile crack extension and propagation in steel foil
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Summary

the fracture behavior of cold-rolled steel foil is examined experimentally and in
iroretical terms. The experiments reveal the strain distribution ahead of cracks
:nd show that crack extension and stable crack growth proceed with constant
tack-tip strain and displacement. The speed of unstable crack propagation ap-
cars to depend on the rate dependence of flow and other properties of the mate-
al within the plastic zone ahead of the crack. The Dugdale model is extended

include finite plate effects and a Bridgeman necking correction. Both of these
‘tors as well as the rate dependence of yielding are shown to have profound
flects on crack speed.

Introduction
\lthough a full three-dimensional elastic-plastic treatment of a cracked
body is not yet in sight, progress has been made in understanding flow and
‘tacture at a crack tip. This has been accomplished with the aid of analy-
©s which are simpler but not as general. The Dugdale model has been par-
nienlarly useful in this respect. Complications such as strain hardening, the
'le sensitivity of flow stress, and finite plate effects have been treated.
i“urthermore, the predictions of this model have lent themselves to experi-
wntal verification.

I'his paper compares several extended versions of the Dugdale model
vith experiments on cold-rolled steel foil — a material which is attractive
‘or 4 number of reasons. Most importantly, cracks in the foil develop narrow
vedge-shaped plastic zones which are like those of the Dugdale model. In
wdition, the steel foil undergoes large plastic strains prior to cracking but
wcks as soon as it yields. Because the deformation proceeds by flow
hrough-the-thickness, the crack-tip strain distribution can be measured by

onitoring the foil thickness locally while the foil is under load. The neck
iI50 confines plastic deformation to a relatively small volume, reducing
'he energy required for ductile cracking and facilitating the study of catas-
‘rophic ductile crack propagation in small test coupons.

I'he paper deals with local yielding prior to cracking, the onset of stable
«tack extension, stable growth, and rapid propagation. It examines the sig-
iticance of the crack-tip strain, displacement, and local instability, the
~levance of classical fracture mechanics, and the processes limiting the
fuctile crack speed. The results, although strictly applicable only when
‘hrough-the-thickness deformation (plane stress) dominates, illuminate ba-
ac relations underlying crack extension in all situations.
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Ductile crack extension and propagation in steel foil

Analytical techniques

Dugdale modeled [1] plastic relaxation at the ends of a crack by regions
which are thin extensions of the crack itself. The key relation results from
abolishing the singularities at the ends of the crack. For a crack of length
2c in a body subjected to a uniform tensile stress T at infinity the relation
can be written

C
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where [ denotes the length of the plastic zones and ¥ is the yield stress
of the material. A continuation of Dugdale’s analysis to obtain the crack
opening displacements was presented by Goodier and Field [2]. In par-
ticular, they found for the displacement at the crack tip

4cY c+1
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where E is the elastic modulus.

Stationary cracks

To account for strain-hardening, Rosenfield, et al. [3] superposed simple
Dugdale solutions to obtain a flow stress which varied in a step-wise
manner along the length of the plastic zone. This superposition method is
also used here. The displacements under step-wise loading are obtained
from Equation 12 of Reference 3 for which Equation 2 represents a special
case. Rosenfield, et al. required a supplementary model for necking within
the plastic zone to relate the displacement to the strain, but in the present
Study a relation is obtained from actual measurements (Equation.5, Table 1),
The load carrying capacity of each point in the plastic zone is connected
to the strain and the flow stress at that point by way of Equation 7, Table
1. This relation has incorporated a Bridgeman correction as discussed
below. The final links are provided by the actual stress-strain charac-
teristics of the material (Equation 3, Table 1) and a specified critical
crack-tip strain.

Propagating cracks

The superposition method is also the basis for a quasi-static analysis of
a propagating ductile crack in which dynamic effects are confined to the
rate dependence of the flow stress. Since experimentally measured ductile
crack speeds in steel foil have not exceeded 400 ft per sec (or 0-05 the
Rayleigh velocity), the quasi-static treatment is supported by a solution
given by Kanninen [8]. This solution, obtained from the Sneddon-Radok
dynamic elasticity equations for a Dugdale crack moving at a constant
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peed in the infinite plate, shows that the difference between static and
vnamic stress fields is negligible for speeds in this range.

Kanninen, et al. [4] compared the quasi-static model with experiments on
‘teel foil and found that the predictions of the analysis were reasonable.
I"urther calculations have now been made and these consider three major

lfable 1,
fechanical properties of cold rolled steel foil

!"low properties [4, 5]
‘tatic yield strength (a): Y5 = 105 ksi
Dynamic yield strength (b):
V=Ys +A+D logye ¢ 1>¢
Y=Y¥s +A+D, logg ¢ 1110 >¢ >
Y=Y + F¢ € > 1110
A = 6 ksi, Dy = 2 ksi, D = 8 ksi
10 psi-sec SF < 25 psi-sec
I'rue flow strength (c): o= ¥s + e, ¢ = 30 ksi (€}

I"lastic zone properties
“train-displacement relation (d):

1
=1 —)'B = in—1

€ og,(l —Bv) B = 950 in (5)
I"oil-half-thickness to neck-radius ratio (e): x= 2 (6)
l.oad carrying capacity (7):
Yo {(1-1/€)'? log [1+2¢ + 2¢M2 (1 + ep2]_ 1} 7
“Zone width at x = ¢ and onset of cracking: d = 0'004 in

Effective zone strain gradient at x = ¢ (?) = 20 in™!
X/e

and onset of cracking:
!"tacture properties
Critical crack-tip strain and displacements:
a. Crack extension and stable
growth &* = 024, v,* =26 x 107* in
b. Crack propagation, u >10 ft per sec
€* = 1'1, ve * = 7 x 104 in
Iracture toughness (f)
a. Onset of crack extension K. = 34 ksi \/1:
b. Onset of unstable crack
propagation K¢ = 37 ksi \/;

+. Obtained from tensile tests of strips

" Obtained from compilation of data in Reference 5 and Fig. 1
I'his is an estimate based on the work of Embury, Keh, and Fisher [6]

!. Obtained from a correlation of € and v measurements
An estimate based on metallographic sections of broken foils

{ Estimated from: Ke = T*A\/(wco), where co is the initial slit length and A is an
~lastic finite plate correction. The data involve cp-values, in the range 0-110 in
to 0440 in and relatively low nominal stress values, T*/Y < 0-6
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problem areas which appear to be involved in constructing an adequate
quasi-static crack propagation model employing the Dugdale model. These
arise in (a) specifying the flow stress-strain rate behavior of the material
at high rates of strain, (b) evaluating the constraints imposed by necking,
and (c) accounting for the finite dimensions of the specimen and its inter-
action with the testing apparatus. Although progress has been made in each
individual area, a model in which all three elements are present has not
been developed.

Strain-rate dependence of the yield stress

A previous compilation of the high strain rate data in the literature sugges-
ted a linear relation between ¥ and ¢ at strain rates above 10° sec - [5].
The data could be fitted reasonably well by a line whose slope, F in Equa-
tion 3 of Table 1, was on the order of 25 psi-sec. In the intervening two
years, the situation has become less certain. Five additional studies have
appeared and these not only increase the scatter but cast doubt on t*-
linearity of the relation (Fig. 1). Values of F of 10 and 25 psi-sec, whizh
are used in the calculations reported below, bracket only about half the
data. Until the situation can be resolved, accurate predictions of ductile

crack speeds based on inputs from dynamic yield experiments are preclu-
ded.

Necking correction

A relation between the flow stress ¢ at each point in the plastic zone and
the load carrying capacity S of that portion of the zone is required. A more
realistic relation than that used previously [4] can be obtained from Bridge-
man’s [7] solution for the necking of a thin plate under tension. In this re-
sult the parameter a/R, the ratio of the half thickness of the neck to the
radius of curvature of the outside surface of the neck, appears as an inde-
pendent variable. Following Bridgeman’s work on tensile bars, an empirical
relation between a/R and the true strain at the neck was constructed, Equa-
tion 6, Table 1. Incorporating this information into Bridgeman’s formula
gives Equation 7, Table 1, which replaces Equation 10 of the previous cal-
culation [4]. Otherwise, the basic equations of the superposition method
and the computational scheme used earlier are essentially unchanged. Full
details are given in Reference 4 and will not be repeated here.

Finite specimen size

To account for finite specimen dimensions, Hulbert, et al. [14] solved the
static elastic boundary value problem in which a Dugdale crack is centrally
located in a thin rectangular sheet. With their technique, called the boun-
dary point least squares method, a series of stress functions, each con-
taining an arbitrary constant, is selected. In particular, the complex variable
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‘unctions of the Kolsov-Muskhelishvili type automatically satisfying the
‘vmmetry conditions of the problem were chosen. As in the simple Dugdale
nodel, plastic deformation is characterized by a uniform flow stress. The
ronstants in the series were evaluated by satisfying the boundary condi-
tions in the least squares sense at a large but discrete number of boundary
points.

Among other conclusions, the finite plate studies have shown that v is
losely approximated by Equation 2 e ven when the crack length is com-
parable to the plate width. On the other hand, the applied load necessary
‘o obtain a given value of I or, equivalently, of v. is well approximated by
I“quation 1 only when ¢ and I are small relative to the plate width. Con-
‘equently, finite plate effects can be safely ignored in analyzing the ex-
‘ension of small slits but must be included in the treatment of the larger
cracks encountered in the unstable propagation studies. The inertia of the
‘pecimen and the testing machine also influence the load acting on the

pecimen during the crack extension process. For the present, however,it
s ussumed consistent with experiment that the crack moves slowly in com-
parison to the wave speeds associated with the testing device and both
the specimen and the machine are in static equilibrium throughout.

Two empirical relations for a Dugdale crack in a sheet having finite
dimensions can be abstracted from the results generated with the boundary
point least squares computer program [14]. The first is

b(c, T)= nE cscﬂTC (8)

Y

where b denotes the displacement of the clamped edge of the foil with re-
ipect to the crack line in the direction normal to the crack, 2h is the height
of the foil, and T is the average applied stress. The second relation con-
nects T and Teo, the applied stress in an infinite plate which produces the
ame displacement for the same crack length:

sec — 9)
T

Too { mc|i/2
2w
where 2w is the width of the foil t.
The applied stress T acting at any stage of the crack extension process
can be evaluated using these empirical relations. If the testing apparatus

"It should be emphasized that Equations 8 and 9 are based solely on the compu-
tational results of 3-% x 4” foils with uniform displacement boundary conditions
ind are, therefore, strictly applicable only to these conditions (which most nearly
iimulate the conditions under which the foil specimens were tested). The possi-
bility of extending these relations to other geometries and boundary conditions
hias not been examined.
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is completely elastic the additional displacement of the edge of the foil
from that at the onset of crack extension will be directly proportional to

the decrease in the force exerted by the apparatus. This can be expressed
as

T =T, - klb(c, T) - Kc, Tyl 10)

where T, is the applied stress acting to initiate crack extension at the
initial crack length 2¢, and k is an elastic spring constant. Substituting
Equation 8 into Equation 10 then gives for the variation of the load as a
function of the crack length

wkc mc,
2csc—2 4+ 1
h

T E
—_———
T, kc mc un

A simplified expression for crack speed is derived in Reference 4 for
the special case of a uniform flow stress with a linear rate dependence.
This can be written

Y, Y
U=TS[— - 1] (12)
F(_f) Yy
Ax/,

where ¥, F, and (Ae/Ax)c are regarded as material constants. Now, by
combining Equations 1 and 2 and using Equation 9, a transcendental equa-
tion for ¥ can be obtained. Introducing the experimental observation that
the crack will propagate with a constant crack-tip displacement [4], this
relation can be solved to give ¥ = ¥(c,T). Thus, by making use of Equa-
tions 11 and 12, crack speeds can be calculated as a function of crack
length. In particular, for the two extreme cases which can be identified,

k =0 (dead loading) and & = (fixed grips).

Experimental techniques
Experiments were performed on a heavily cold rolled 0-00175 in-thickt,

plain carbon steel foil [4], whose mechanical properties are listed in
Table 1.

Measurements of the plastic zone, both before crack extension and
during stable growth, were performed on foil coupons with a gage section

TT‘he original thickness of the foil was 0°00185 in and this was reduced to 0-00175
in in the course of electropolishing the surface to enhance the reflectivity. Thick-
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39 in-wide by 4 in-long. Centrally located slits 0-006 in-wide of length
2¢ = 0220 in, 0-440 in, and 0-880 in, were introduced by spark machining
normal to the rolling direction. Deformation produced by these slits under
load was predominantly through-the-thickness and concentrated in a small
segment of the slit root radius (see Figs. 2 (a) and 2 (b)) which suggests
that the slits behaved more like sharp cracks than the root radius would
imply.

The coupons were cemented into grips and loaded in a small tensioning
device which could be mounted on a standard interferometric microscope.
In this way, it was possible to photograph the interferometric pattern pro-
duced by the yielded (necked) region near the tip of the slit at predeter-
mined stress levels while the foil was under load (see example in Fig,.

2 (a)). Observations at high magnification also pinpointed the onset of
crack extension and the amount of stable crack growth.

Crack speed measurements were derived from high speed motion picture
records (3300 frames per sec) of 325 in by 3-5 in foil coupons with slits
of length 2¢ = 0-220 in broken under dead load in a creep machine. The
crack-tip strain and displacement cited for the propagating cracks in Table
I were derived from highly magnified metallographic sections of the broken
toil. Details of these experiments are contained in Reference 4.

Itesults

l.ocal yielding

I'he interferometric pattern of the plastic zone ¢, , the through-the-thickness
train distribution, which can be presented graphically in several ways

I3, 15]: (a) by isostrain contours, Fig. 2 (b), (b) by e, -profiles on sections
long the plastic zone, Fig. 2 (c), and (c) by the gradient of ¢ where ¢ is the
largest value of ¢, on any section, Fig. 3 (a). These results illustrate that the
toil embodies many of the idealizations of the Dugdale model such as elon-
rated, wedge-shaped zones. This shape and the fact that the zones are
necked largely preclude in-plane strain and lead to the approximation

‘v = —€ . A further consequence is that v, the y-direction displacement pro-
{uced by plastic deformation within the zone, can be deduced from the area
inscribed by the ¢, -profile in Fig, 2 (o)t.

Values of ¢ of each point of the zone are approximated by a single valued
function of v independent of position or stress level (Equation 5, Table 1).
This implies that each element of the foil in the path of the growing crack
“Xperiences the same stress-strain history, an assumption implicit in the
analysis. Finally, Fig. 3 (a) shows that the strain distribution measured
in the foil near the slit is closely matched by the distribution obtained

£

tlv = —J-szdy

—®
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analytically.! Deviations at large distances indicate that the model overesti-
mates the measured zone length possibly because model zones are, propor-
tionately, even narrower than those of the foil.

Onset of crack extension

Fig. 3 (a) illustrates that the strain distributions measured at the same K-
levelt are indistinguishable even though substantially different slit
lengths and stress levels are involved, and the strain distributions coin-
ciding with the onset of stable crack extension are also indistinguishable.
It follows that crack extension in the foils will obey a stress intensity
criterion at low nominal stress levels, e.g., when T* < 60 ksi (T*/Y <0-6)
in Fig. 4 (¢).

The invariance of the strain distribution existing at the onset of crack
extension appears to be related to €, the crack-tip strain and v, , the
crack tip displacement’ As shown in Figs. 3 (a) and 4 (b), crack exten-
sion begins when ¢, = 0-24 + 0-03 independent of slit length or stress
level, and this is regarded as a critical value, ¢, *. The same value of
€ * is maintained throughout the stable growth period until the onset of
unstable propagation (see Figs. 3 (b) and 4 (b)).

Furthermore, the existence of a constant, limiting ¢, * is consistent with:

(a) McClintock’s [16-18] analysis of the micromechanics of ductile rup-

ture taken together with the invariance of stress-strain history within
the zone

(b) The fact that rupture is confined to the immediate vicinity of the slit

or crack tip, and

(c) The existence of a limiting crack-tip displacement (see Fig. 3 (a))

as postulated by Wells [19], since ¢ and v are related.
Values of T* and K., the nominal stress and stress intensity coinciding
with the onset of crack extension were derived using the super-position
method together with Equations 4-7 and by the limiting value of the crack-
tip strain [3]. As shown in Figs. 4 (c) and 4 (d), the calculated values are
in accord with the measurements, a result which is not surprising since the
Strains close to the slit are accurately described by the model.

Stable crack growth
The onset of crack extension at K. =34 ksi/in is followed by a short in-
terval where the crack grows with increasing stress but does not become

tCalculated from the basic displacement relation and the flow properties of the

foil as described by Equations 4-7,

1K =TAV mcis the stress intensity, where T is the net section stress, 2c the

slit length and A an elastic finite specimen-size correction.

$The interferometric patterns are actually very difficult to interpret right at the

tip of the slit or growing crack. Values of ¢ and e* were therefore always measured

0-001 in from the slit or crack tip.
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unstable. A second toughness value, K, ~ 37 ksi y/int marks the transition
from slow growth to fast fracture, and this can be regarded as the ‘ulti-
mate’ strength of a cracked coupon. Observations of stable growth in the
toil are especially interesting because the growth is neither accompanied
by nor complicated by change in the fracture mode. The amounts of stable
nrowth observed, Ac/co= 0-05-0-28, are in the same range as the values
reported by McClintock [16] for aluminum foil. Fig. 3 (b) shows that the
sones are visibly longer after slow growth, but the strain distribution near
the crack tip is unchanged. The zones observed just before the onset of
tust fracture are consequently more closely approximated by the calculated
pradient in Fig. 3 (a) than the pre-growth zones. Since the Dugdale model
has no provisions for stable growth, the agreement is fortuitous. However,
the fact that the model does reproduce the gradient existing at the onset
ot fast fracture lends support to the crack propagation calculations.

!'nstable crack propagation
Sections of the foil ruptured by unstable cracks propagating at speeds from
tbout 10-300 ft per sec show roughly constant values of ¢, * ~ 1-1 and
v. * =7 x107* int [9]. This invariance simplifies the task of calculating
<rack speed by the two methods that have been discussed. The results of
‘uch calculations, showing the relative contributions of the rate sensitivity
coetficient, the necking correction, and finite plate effects, are presented
i Iig. 5. It is apparent that each of these three factors exerts a strong
intluence on the calculated values. The comparisons with experiments are
Iso intended to illustrate that the analysis can be fitted to the measure-
nents with reasonable values of the coefficients. For example, the com-
parison in Fig. 5 is only meaningful as long as the coupon can be approxi-
nated by an infinite plate, i.e., as long as the c/w ratio is small. Fig.
» 1llustrates that the correspondence extends to large values of ¢/w when
the finite dimensions of the coupon and end conditions are taken into ac-
count.

I'he results demonstrate a measure of internal self consistency: the
alue F = 10 psi-sec together with a necking correction (Fig. 5 (a))
‘ppears to be roughly equivalent to F = 25 psi-sec without a necking

orrection (Fig. 5 (b)).'However, too much significance cannot be attached
‘o the agreements seen in Fig. 5. For one thing, the rate sensitivity is

not well known; even the range 10 psi-sec < F < 25 psi-sec does not
bracket all the high rate flow measurements reported for steel. Secondly,
vhile agreement with a dead load solution is plausible, this too involves
uncertainties, since the dynamic response of the creep machine was not
letermined.

' I'his value is based on the initial slit length.

i While these values are substantially larger than those observed during stable
«towth, they are consistent with the e-v relation used earlier.
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Discussion
The cold rolled steel foil comes close to reproducing in the laboratory two
idealizations: (a) the elastic-perfectly plastic material and (b) crack ex-
tension under plane stress. The Dugdale-like zones are unquestionably
a result of the lack of strain hardening coupled with the ease of through-
the-thickness strain. The same foil displays even narrower zones in an
annealed condition [14] with a sharp yield drop that is equivalent to a
negative strain hardening rate. However, when the foil is notched after
it has been both annealed and prestrained into the range where it strain
hardens significantly, it displays broader zones more like those calculated
by Swedlow, ef af. [20]. The results for the foil thus illustrate some general
principles and are especially relevant for thin, heavily worked or low strain
hardening materials.

The lack of hardening causes necking as soon as yielding begins and this
contributes to the strain concentration generated at the crack tip. However,
the necked regions derive support from the surrounding material and do not
become unstable even though the macroscopic necking strain, essentially
zero for the foil, is exceeded. This is entirely consistent with a simplified
analysis of necking instability within a Dugdale zone given in an earlier
paper [15], which shows that the instability condition is a function of the
Stress-strain distribution along the entire zone and not just the necking
Strain. While these results cast doubt on Krafft’s ligament instability cri-
terion [21] which identifies ¢, * with the macroscopic necking strain, they
do not negate the importance of strain hardening in mitigating strain con-
centrations or the concept of a critical strain. However, the critical strain
should be regarded as a fracture property of the material which is governed
by the microscopic ductile rupture process and is sensitive to the stress-
States and strain rates generated near the crack tip. A simple mathematical
€xpression of these ideas derived previously [3, 15, 22]:

K. =+\/0'5EY¢ *q (13)

gives K. = 39 ksij Vint which is very close to K. =34 ksi\/in, the value
actually measured for the foil. Similarly for 0-082 in-thick maraging steel
aged to peak hardness [23], a condition which also displays little strain
hardening, the prediction #K, = 222 ksi+/in is very close to the measured
value K, = 218 ksi Vin.

The Dugdale crack does not lend itself to the treatment of stable crack
growth because it is difficult to model the residual stresses that develop
within the plastic region left behind by the growing crack. A treatment of

TFor the steel foil E = 30,000 ksi, ¥ = 105 ksi, ¢, = 0-24, d (the width of the zone
near the crack tip at failure) = 0-004 in.
¥ For maraging steel E = 30,000 ksi, ¥ = 269 ksi, € = 010, d =0-123 jp.
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stable growth under antiplane strain has been derived by McClintock [16-
18] and this suggests how flow and fracture affect stable growth. However,
there is some question whether the analysis is generally and directly appli-
cable to simple tension.t

The Dugdale crack offers insights into ductile crack propagation. The
calculations presented in this paper tend to support the idea that the speed
of ductile fracture is limited by the rate of plastic flow ahead of the crack.
The analysis identifies the important contributions to the propagation pro-
cess: (a) the absolute value of the yield stress, (b) ¢, *, (c) the e-v
relation and e-gradient which are influenced by the strain hardening rate,
(d) the rate sensitivity of flow, (e) necking, (f) finite plate dimensions
and end conditions, and (g) the dynamic response of the testing machine,
I"urther testing of the analysis is hampered by the dearth of reliable
high-strain-rate flow stress data. Ultimately, however, it may be possible
to reverse the procedure and extract high-strain-rate flow data from crack-
speed measurements.
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Ductile crack extension and propagation in steel foil
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to unstable fracture. 6/14
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Iig. 5. Comparison of calculated and observed crack speeds in steel foil: (a)

and (b) superposition method applied to an infinite plate, and (c) and (d) uniform
tlow stress-finite plate method.
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