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Abstract 
Many experimental observations show that the finite-life fatigue strength of 
metallic materials in the high-cycle regime decreases with increasing the 
specimen size.  Such a decrease can be explained by considering the fractal nature 
of the reacting cross-sections of structures.  Accordingly, the so-called fractal 
fatigue strength is represented by a force amplitude acting on a surface with a 
fractal dimension lower than 2, where such a dimensional decrement depends on 
the presence of damage (cracks, voids) and heterogeneity in the material ligament.  
A monofractal scaling law for the finite-life fatigue strength of metals is herein 
proposed, and some experimental results are examined to show how to apply such 
a theoretical approach. 
 
 
1. Introduction 
 
Many experimental observations show that static strength and fatigue strength of 
materials decrease with increasing the specimen size (size effect), and this 
decrease is more significant for comparatively heterogeneous and/or damaged 
materials.  Such a phenomenon was analysed by Griffith [1] for glass filaments by 
assuming the presence of microcracks, whereas Peterson [2] examined size effect 
for fatigue fracture.  Weibull [3] introduced the statistical concept of the weakest 
link in a chain, that is, by increasing the volume of the structural component (or 
specimen), the probability of failure increases due to the higher probability of 
finding a critical microcrack provoking macroscopic fracture.  Then a scaling law 
for fracture failure of structures has been proposed in Ref. [4], by showing that the 
size of the most dangerous defect increases with increasing the size of the 
structure. 
 
An usual engineering approach to explain size effect in fatigue is based on the 
stress gradient concept [5].  Accordingly, fatigue cracks can initiate and grow in a 
structure only if a finite region of this structure is subjected to a cyclic stress 
greater than a characteristic value, with the finite region size dependent on the 
characteristics of the material microstructure (e.g. grain size in metals). 
 
Then the fractal nature of the material microstructure [6] and the renormalization 
group theory [7] have been considered in Ref. [8] (a detailed review on the 
application of the fractal approach to the mechanics of heterogeneous and 



 2

disordered materials can be found in Ref. [9]).  More precisely, the reacting cross-
section of a given structure shows a self-similar weakening due to the material 
heterogeneity, cracks, defects, etc., and therefore the fractal (noninteger) 
dimension of such a surface can be assumed to be lower than 2 [10], that is, the 
damaged ligament of a heterogeneous solid may be modelled through a “lacunar” 
fractal set, as for instance the celebrated Sierpinski carpet.  Through the 
renormalization procedure [7], new mechanical properties can be defined with 
physical dimensions dependent on the fractal dimension of the damaged 
heterogeneous ligament, and these properties are scale-invariant constants [8], 
such as the fractal (or renormalized) finite-life fatigue strength *

aσ  discussed in 
the following. 
 
The above fractal concepts have recently been applied to size effect in fatigue 
[11,12].  In more detail, a monofractal scaling law (related to self-similar fractal 
topologies) and a multifractal scaling law (related to self-affine fractal topologies) 
have been deduced for fatigue limit [11].  Then, a size-dependent crack 
propagation law has been proposed [12].  It is interesting to note that the 
generalized Frost and Dugdale crack growth model discussed in Ref. [13]  follows 
the law determined in Ref. [12]. 
 
In the present paper, a so-called monofractal scaling law for the finite-life fatigue 
strength of metals is discussed, and some experimental results [14] are examined 
to show how to apply the theoretical fractal approach proposed. 
 
 
2. Theoretical Monofractal Approach for Finite-Life Fatigue Strength 
 
Let us consider two geometrically similar cylinders ( A  and B , with B  larger 
than A ), made up of the same material, subjected to cyclic axial loading.  The 
apparent finite-life fatigue strengths for such bodies are equal to (the subscript a  
stands for amplitude): 
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where AaF ,  and BaF ,  are the axial force amplitudes (acting on the two 

cylinders, respectively), which provoke fatigue fracture failure after N  loading 
cycles (Fig.1).  From experimental tests, it has been deduced that, for cylinder B  
larger than cylinder A , Aa,σ  is greater than Ba,σ . 
 
As is well-known, the finite-life fatigue strength for metals can be represented in 
the high-cycle regime by the following Basquin-like power law: 
   ( ) βσ aNDC =)(         (2) 



 3

A

B

β
1

σa
(ln scale)

N N
(ln scale)

σa,A

σa,B

C(D) = N (     )σa
β

D  > DB A

 
 

   Figure 1. S-N curves in a bilogarithmic diagram. 
 
where β  is related to the slope ( )β1−  of the straight lines in the bilogarithmic 
diagram in Fig.1 and, for a given material and a fixed value of cylinder size D , 
the S-N curve parameter )(DC  is a constant.  Since Aa,σ  > Ba,σ  for NN =  

and cylinder B  larger than cylinder A , we get that AC  > BC : 

   ( ) βσ AaA NC ,=        (3a) 

   ( ) βσ BaB NC ,=        (3b) 
that is, the parameter )(DC  decreases by increasing D . 
 
As is said in the previous Section, the reacting cross-section of a structure can be 
assumed to present a fractal dimension d−= 2α , with 5.00 ≤≤ d , where the 
decrement d  depends on a self-similar microstructural (heterogeneity) and 
micromechanical (damage) weakening [8, 10], and the value of d  is higher when 
such a weakening is more significant.  Then, by assuming that the fractal 
(renormalized) fatigue strength *

aσ  is a material constant with physical 

dimensions given by [ ] [ ] dLF −2 , the following expression holds: 
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whereas Equation (2) in a fractal form is given by: 

   ( ) β
σ **

aNC =         (6) 

The fractal parameter *C  is a scale-invariant material property, that is, the S-N 
curve becomes independent of the structure size (Fig.2). 
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Figure 2. Fractal (or renormalized) S-N curve in a bilogarithmic diagram. 
 
Recalling Eqs (1b), (5), (1a) and (3a) in this order, Equation (3b) becomes: 
   ( ) βd

ABAB DDCC −=       (7a) 
and in a logarithmic form : 
  ( ) ( )ABAB DDdCC lnlnln β−=      (7b) 
 
By assuming 1=AD  and DDB =  and calling with the symbol 1C  the value of 

AC  for a cylinder with diameter equal to 1, the last two expressions can be 
written as follows: 
  ( ) βdDCDC −= 1)(        (8a) 
  ( ) DdCDC lnln)(ln 1 β−=       (8b) 
where the latter equation represents a straight line with a slope equal to d−  times 

β  (Fig.3).  Note that 1C  is equal to the scale-invariant material property *C , 
defined in Eq.(6).  As a matter of fact, recalling Eqs (4), (1a) and (3a), Equation 
(6) for NN =   becomes: 

  ( ) β
β

π
d

AAd
A

Aa DC
D
F

NC =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −2

,* 4
      (9) 

and this expression for 1=AD  gives us 1
* CC = , that is, *C  corresponds to the 

value of the parameter )(DC  for a cylinder with 1=D . 
 
Equation (2) can be transformed into a logarithmic relationship: 
  ( ) ( ) )(ln1ln1ln DCNa ββσ +−=  ,    (10) 
and this expression represents parallel S-N curves which depend on the structure 
size D  (Fig.4).  Note that each line intersects the horizontal axis of the coordinate 
system in a point the abscissa of which is equal to )(ln DC  (see also Fig.3). 
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Figure 3. S-N curve parameter )(DC  against structure size D . 
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Figure 4. Finite-life fatigue strength aσ  against number N  of loading cycles. 
 
 
Equations analogous to those for push-pull loading (Eqs (1) to (10)) can be 
deduced for rotary bending. 
 
3. Experimental Application 
 
Now some experimental results are analysed to show how to apply the above 
equations.  Hatanaka et al. [14] performed fatigue tests on smooth specimens 
made up of two different materials: a cast steel (JIS SCMn 2A) originally 
including  many defects  (comparatively disordered material),  and  a forged steel 
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(JIS SF 50) with a quite homogeneous microstructure (comparatively ordered 
material).  For SCMn 2A steel, the yield stress is equal to 325MPa, the ultimate 
tensile stress to 576MPa and the elongation to 18.2%.  For SF 50 steel, the yield 
stress is equal to 283MPa, the ultimate tensile stress to 484MPa and the 
elongation to 39.1%. 
 
Cylindrical smooth specimens with diameter D  equal to 8, 20, 30 and 40 mm, 
respectively, were tested.  The experimental S-N curves for the two steels are 
displayed in Fig.5 by excluding the run out data.  Note that, for both materials, the 
fatigue strength decreases by increasing the specimen size.  In particular, by 
increasing D  from 8 to 40 mm, the amount of decrease in the value of fatigue 
strength aσ  for N  = 106 cycles is equal to about 24.3% for SCMn 2A steel and 
about 13.5% for SF 50 steel. 
 
For each S-N curve in Fig.5, the parameter β  can be determined from the straight 
line slope (which is equal to ( )β1− , see Eq.10).  In particular, for the disordered 
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Figure 5. S-N curves related to two steels tested by Hatanaka et al.[14], for different 
values of specimen diameter D .  Fatigue strength aσ  is expressed in MPa. 
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material (Fig.5a) the best-fit values of β  are equal to 34.544, 37.540, 38.102, 
37.609 (for D  = 8, 20, 30, 40 mm, respectively) and, since there is a little 
variation between them, the average value β

~  (SCMn 2A) = 36.949 can be 
considered in the following.  Then, for each straight line with a slope ( )β~1− , the 
value of )(ln DC  can be deduced from the abscissa of the intersection point with 
the horizontal axis of the coordinate system, as is discussed in the previous 
Section (Fig.4).  For the ordered material (Fig.5b) the best-fit values of β  are 
equal to 19.342, 20.401, 21.719, 21.195 (for D  = 8, 20, 30, 40 mm, respectively), 
the average value is β~  (SF 50) = 20.664, and the experimental values of )(ln DC  
can be obtained as is described above. 
 
Finally, by plotting such values of )(ln DC  against Dln  (Fig.6), two straight 
lines can be obtained through the least squares method: the straight line slope, 

( )βd−  (see Eq.8b and Fig.3), for the cast steel is equal to –6.628, whereas that 
for the forged steel is equal to -2.754.  Therefore, by considering the average 
values β~ , the decrement d  is equal to 0.18 and 0.13, respectively, and the 
reacting cross-section presents a fractal dimension d−= 2α  equal to 1.82 and 
1.87, respectively, i.e. the material ligament is closer to a two-dimensional 
Euclidean surface for the comparatively ordered material (forged steel: JIS SF 50). 
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Figure 6. Experimental S-N curve parameter )(DC  against structure size D   for 
two steels tested by Hatanaka et al. [14]. 
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4. Conclusions 
 

Many experimental observations show that the finite-life fatigue strength of a 
given material in the high-cycle regime decreases by increasing the specimen size.  
Size effect in finite-life fatigue strength has herein been examined through fractal 
geometry concepts, by assuming a self-similar weakening (monofractal approach) 
of the reacting cross-sections of structures, due to material heterogeneity and 
mechanical damage.  Experimental data related to two different steels have been 
examined to discuss how to apply the above theoretical monofractal approach. 
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