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1. Introduction 
 
Submitted to dynamic loadings, ceramics break into many fragments. Even with 
the considerable progress of the last decades, fragmentation remains 
misunderstood.  Indeed, the effect of the ceramic microstructure on dynamic 
fragmentation is a current research issue. In quasi-statics, the general agreement is 
that the weakest link theory applies and predicts that fracture occurs at the 
weakest flaws: the structure breaks into few fragments. On the contrary, 
understanding the role of the defects on dynamic fragmentation is still an open 
issue [10]. Ceramics are usually brittle and exhibit a large population of defects. 
In dynamics, not only the weakest flaws but a critical population of flaws 
initiates. It generates local damage and potentially failure at several fracture sites: 
the structure breaks into many fragments.  
 
Besides the complications brought by the microstructure, fragmentation remains a 
complex physical phenomenon that is usually described either using statistics or 
physicals. Physically-based theories have first emerged during World War II 
when Mott studied shell fragmentation [8]. He described the process dynamically: 
when a fracture occurs at some point, it releases a compression wave which 
protects the encompassed part of the body. Later, this idea of obscuration waves 
has been reused theoretically by Hild et al. in [2], Drugan in [3] and numerically 
by Zhou et al. in [12]. [3] and [12] have both have enriched the concept by 
discretizing space at the potentially fracture sites. Cohesive elements model crack 
opening, which is not instantaneous anymore. Drugan’s theoretical approach leads 
to the definition of a characteristic fragment size, redefined here in section 4. Yet, 
analytical derivations remain limited to model the complex wave interaction 
network that takes place during the process. The main advantage of numerical 
simulations is their ability to handle precisely these non-linearities. Zhou et al. ran 
simulations based on the method of characteristics and ended up with promising 
results on fragment size distributions. Though, they did not include the 
microstructure of the material and did not focus on its effect on dynamic 
fragmentation. 
 
Similarly, energy-based models are part of the physically-based class and do not 
attempt to fill in this gap. These theories use energy criteria to relate material 
properties and loading rates to the characteristic fragment size. The most well-
known is Grady’s [6], who assumed that the local kinetic energy is fully 
converted into fracture energy. Glenn and Chudnovsky [5] generalized this 
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formulation to quasi-static regime where the strain energy released by the weakest 
link failure dominates. Due to their simplicity, these formulations have been 
conveniently used in most engineering applications related to dynamic 
fragmentation. 
 
Finally, the second class of approaches is based on statistics, which are obviously 
an appropriate tool for predicting fragment size and velocity distributions. The 
mathematical derivation is however not direct. Over the past decades, theoretical, 
numerical, and experimental theories have emerged. Although they all predict an 
exponential law for the cumulative density function of the fragment sizes, their 
characteristic parameters differ.  
 
In this paper, we aim at describing the effect of the population of defects on 
dynamic fragmentation. Motivated by its simplicity, we have focused our work on 
the one-dimensional expanding ring experiment. The finite-element method 
coupled to cohesive interfaces model the evolution of the process. Given their 
density and their initial distribution, defects are randomly distributed along the 
structure. After the numerical definition of the problem, the physics of the 
phenomenon are described by analyzing the energy terms. The effect of the 
population of defects is then underlined by studying the average fragment size and 
the distribution of fragment sizes. 
 
 
2. Numerical methodology 
 

21. The expanding ring test 
 

First defined by Mott in the forties [9], the expanding ring experiment is an easily 
conductible test. Numerous experimental results are consequently available for 
ductile and brittle materials. Moreover, since the ring is a periodic structure with 
negligible thickness, neither boundary effects nor crack propagation determine the 
process evolution. The physical interpretation is thus focused on the initiation of 
the cracks, crucial in dynamics and inherently related to the population of defects. 
In practice, the mesh has one element in the thickness so that the numerical 
calculations do not allow crack propagation. 
 
The test consists in studying the fragmentation of a heterogeneous brittle ring 
whose motion is imparted by some radial impulse, as illustrated in figure (1). Just 
before the first crack initiates at the weakest link, the ring is subjected to a 

uniform strain rate
radius

velocityradial
=

•

ε . Then, release waves propagate away from 

the damaged site, relieving the tension in its neighbourhood and avoiding 
encompassed sites to initiate. Fragmentation is complete when the release waves 
have unloaded the entire ring.  In this study, we simulate the fragmentation of a 
ceramic of length cm2  with volumetric mass 3.2750 −= mkgρ , approximate 
failure strength MPac 300=σ  and approximate fracture 
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toughness 1.100 −= mNGc . Everywhere but at the fracture sites, the material 
behaves elastically with Young’s modulus GPaE 271=  so that the elastic wave 
speed is 1.10000 −= smc . The expansion of the ring is simulated with the finite-
element method. Cohesive elements handle crack initiation, opening, closing and 
failure. 
 

 
 
 
 
 

2.2. The cohesive methodology 
 
Initially the ring is crack free. As the stress increases, cohesive elements are 
dynamically inserted into the mesh, at any time, any point, where the local stress 
exceeds the local critical value called cohesive strength: 
   ( ) ( ) elementcohesiveaofInsertionXX c ⇒≥σσ  
 
The insertion framework follows the one described by Camacho and Ortiz in [1]. 
Once initiated, the crack either grows or closes, governed by the linear cohesive 
behaviour defined in figure (2). Cracks communicate through elastic waves that 
propagate in both directions.  
 
The crack opening governs the evolution of the crack. It is decomposed into 
normal nδ and shearing sδ slidings: 

22
sncoh βδδδ +=  

In our case, as the problem is essentially one dimensional, ( )0== βδδ ncoh . 
 
The cohesive behaviour is guided by: 
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Figure 1 : The expanding ring test  
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cσ  is the cohesive strength of the cohesive element, cδ  is its critical opening 
distance. The maximum attained opening is maxδ , the effective opening is cohδ . 
The first equation applies when the crack opens while the second controls the 
closing and reopening.  
 
The parameter maxδ is used as an internal variable to define the local damage: 

⎟
⎠
⎞⎜

⎝
⎛= 0.1,max max

c
D δ

δ  

 
When D is equal to 1, the cohesive element is totally broken and has released the 

local toughness
2

cc
cG

δσ
= . When it is partially damaged, it has dissipated 

cdis GDE 2= and stores cohcohrecR δσ=  (where rec stands for recoverable). 
 

  
 
 
 
This numerical scheme is defined locally; each fracture site is defined by two 
parameters cσ  and cG . Thus, it makes physical sense to use these parameters for 
the definition of the defect population.  
 
 

2.3. Population of defects 
 
Each fracture site is associated to a given value of cohesive strength cσ . We make 
the hypothesis that the population of defects determines the distribution of cσ . 
Two parameters have to be defined: the density of defects and the distribution of 
the values of cσ . The density of defects is the number of randomly spaced fracture 
sites (pores or inclusions or microcracks …) per unit length.  At a given applied 
stress, some of these defects are weak enough to initiate.  This condition is 
determined by the value of ( )Xcσ  statistically defined by the probability density 
function. 
 

Figure 2 : The adopted cohesive law and its  related energies  



 5

In this study, three types of probability density functions are studied: uniform, 
normal and Weibull [11] distributions. They are entirely defined by their mean 
(symbol m in fig(3)) and their standard deviation (symbol s). Large and small 
standard deviations are compared in order to link nearly homogeneous and highly 
heterogeneous materials. 
 

  
 
 

 
 
The following section focuses on energy terms in order to apprehend the physics 
of the phenomenon. Then, we highlight the influence of the population of defects 
and the loading rate on the average fragment size. Finally, our main results on 
fragment size distributions are presented. 
 
 
 
3. Energy terms 
 
When fragmentation processes, kinetic and elastic energies are partially converted 
into cohesive energy. Figure (4) illustrates the evolution of the energy for a 
loading rate equal to 1.1000 −sm . The potential energy increases until the peak 
stress after which most fragments are generated. Then, it oscillates around a non-
zero value, in the opposite way as the kinetic energy. Each fragment has a residual 
kinetic energy (fragments are flying away and stress waves still propagate) and a 
residual potential energy (fragments are ringing because of their elastic bulk 
properties). The dissipated cohesive energy is an increasing function of time that 
stabilizes when no more fragments is generated.  
 
These energy terms depend both on the strain rate and the population of defects. 
The weakest defect obviously drives the maximum potential energy; the 
behaviour after this peak depends on the fracture process. Figure (5) gives the 
example of the time evolution of the potential energy of two uniform distributions 
loaded at 1510 −ms . 
 
 
 
 

Figure 3 : Probability density functions of some defect populations 
m1=m2=344MPa, s1=140MPa, s2=21MPa, m3=347MPa, s3= 5.7MPa, m4=3.86MPa, s4=3MPa 
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Although they have the same mean, one has a low standard deviation (the ring is 
nearly homogeneous, grey plot in fig(5)); the other one has a large standard 
deviation (the ring is highly heterogeneous, dark plot in fig(5)). In the 
homogeneous case, the potential energy reaches the peak stress and decreases 
slowly afterwards. The process characteristic time is larger than in the 
heterogeneous case. Energy terms represent well the fragmentation process. Yet, 
they do not describe it quantitatively; the following sections detail fragment 
characteristics. 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 5 : Potential energy evolution for two uniform defect 
population with  same mean and different standard deviation 

Figure 4 : Time evolution of the energy terms and  number of generated fragments 
when the loading rate is 1000m/s 
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4. Influence of the defects and the strain rate on the average fragment size 
 
Following the idea of Zhou et al. in [14], we consider that the average fragment 
size characterizes the ring fragmentation. Several distributions of defects have 
been tested: the density of defects, the shape of the distribution, its standard 
deviation and its mean influence fragmentation. For instance, figure (6) represents 
the effect of the density on the average fragment size for different strain rates. The 
distribution is uniform with mean 344MPa and standard deviation 140MPa. Zhou 
et al. proposed a normalization of the axis, depending on the material properties. 

The x-axis and y-axis are respectively divided by
•

0ε  and by 0s  

where 20
c

c EG
s

σ
=  and 

0
0 .

.
sE

c cσ
ε =
•

 

 
When the ring is not homogeneous, this normalization does not gather anymore 
the plots in a single universal law. A new normalization is to be defined by 
including the microstructure properties. 
 

 

 

 
 
 
 
 
 
5. Influence of defects and strain rate on the distribution of fragments  
 
Once the average fragment size is computed, one can relevantly consider the 
distribution of fragment sizes. In the following results, the x-axis has been 
normalized by the average fragment size. Following most previous works on 
fragmentation, we then fit the curves with the cumulative density function of size 
s  defined by: 
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Figure 6 : Average fragment size versus strain rate for different density, for a given  
distribution (uniform with mean 344MPa and standard deviation  140 MPa ) 
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Grady [7] used Poisson statistics and derived the exponent value 1. Mott [9] 
gathered experimental data and showed that the exponent is ½. Other experiments 
[4] exhibit an exponent larger than 2. Numerical results from Zhou et al. [12, 13] 
predicted the exponent 2. In our case, we observe a slightly different exponent. 
Indeed, at first glance, the exponent m does not vary considerably and ranges the 
values 2.5 +/- 0.3. Yet, these results are to be complemented in order to confirm 
this trend. If it is confirmed, it would mean that the only determining parameter is 
the average fragment size.  
 

 
 

 
 
 
 
 
6. Summary and discussion 
 
In this paper, we have developed a methodology to analyze fragmentation of a 
heterogeneous ring. The choice of this quasi one-dimensional structure was made 
for simplicity in order to focus on heterogeneity effects. The finite-element 
scheme modelled the elastic temporal evolution of the bulk while cohesive linear 
elements managed crack initiation, opening, closure and failure. This numerical 
framework provided an effective mean of simulating stress wave interactions and 
their effect on fragmentation. The population of defects was defined both by the 
density of flaws and by the distribution of their critical stresses.  
 
Energy terms helped the visualization of these stress waves and the evolution of 
the energy dissipated by the numerous fractures. Then, we related each numerical 
test to the average fragment size, in order to quantify the effect of the loading rate 
and the defects on fragmentation. Both had an obvious effect that increased with 
the loading rate. Since the normalization proposed by Zhou et al. only considered 
homogeneous materials, it did not apply to our problem. A new normalization 
must be defined and include some relevant parameters of the population of 
defects. Finally, we looked at the distribution of fragment sizes and observed that 
after normalizing the x-axis, they follow a universal exponential law which 
exponent is around 2.5. This result is promising and still needs to be confirmed by 
other developments. Monte-Carlo simulations are to be run to give a statistical 
better understanding of the relation between the fragmentation process and the 
material microstructure.  

Figure 6: Cumulative density function of the fragment sizes. Nf is the number of fragments 
On the left, same normal distribution, density and strain rate vary. On the right, same strain 
rate, density and distribution type vary. 
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