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In this work, we consider the diffusion-controlled axisymmetric fracture in an 
infinite space, and half-space. An important example of diffusion-controlled 
fracture growth is given by hydrogen induced cracking. In metals, hydrogen is 
typically dissolved in the proton form.  When protons reach the crack surface, 
they recombine with electrons and form molecular hydrogen in the crack cavity. 
Then, the fracture can propagate even in the absence of any external loading, that 
is, only under the excessive pressure of gas hydrogen accumulated inside the 
crack.  
 
Our results show that in the long-time asymptotic approximation (based on the 
quasi-static solution), the diffusion-controlled delamination propagates with 
constant velocity. We determine a maximum critical concentration that limits the 
use of the quasi-static solution. A transient solution, representing a short-time 
asymptotic approximation, is used when the concentration of gas exceeds the 
critical concentration. We then match these two end-member cases by using the 
method of Pade approximations and present closed-form solutions for both 
internal and near-surface diffusion-controlled crack propagation at different time 
scales. 
 
1. INTRODUCTION 

 
Hydrogen is known to reduce the fracture resistance of many metals and steels, 
and thereby affect the behavior of engineering structures [e.g., Hirth, 1984; 
Panasyuk et al., 1987; Hick and Alstetter, 1992; Zhong et al., 1993]. Hydrogen 
absorbed by a metal is usually dissolved in the lattice in the proton form [e.g., 
Turnbull, 1993; Vehoff, 1997; Krom et al., 1999]. Some of the protons reach the 
surface of pre-existing or freshly created cracks where they react with electrons 
and form molecular hydrogen in the crack cavity [e.g., Zapffe and Moore, 1943; 
Van Leeuwen, 1974; Turnbull, 1993; Gonzales et al., 1997]. Because the effective 
radius of hydrogen molecules usually exceeds the size of vacancies in the lattice 
cell, the molecular form of hydrogen is thermodynamically more stable near the 
crack surfaces, which leads to accumulation of gas hydrogen inside the crack. As 
a result of excessive hydrogen pressure, fracture often takes place even in the 
absence of any external loading [e.g., Eliaz et al., 2004; Turnbull, 1993; Vehoff, 
1997] and such a process is usually called hydrogen-induced cracking (HIC). 
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Figure 1. (a) Hydrogen induced fracture near the external surface 

of a thick steel pipe [after Polyakov, 1996], (b) 
hydrogen generated blisters on the [metal] surface [after 
Davis, 2000], and (b and c) hydrogen caused 
delaminations in a metal plate [after Gapharov et al., 
1998]. 

 
In this work, we consider an importan case of HIC – hydrogen-induced 
delamination (HID) that occures as a separation of a surface layer from the solid 
(Figure 1) caused by hydrogen embrittlement in metals [e.g., Speidel, 1984; 
Turnbull, 1993; Vehoff, 1997]. In particular, a common feature of HIC in pipes 
[Gonzalez et al., 1997], is that the fractures propagate in the direction parallel to 
the pipe wall (as in Figures 1c and 1d). In time, such delaminations spread, 
damaging the pipe wall, which often results in the pipeline fracture and its 
premature replacement [Gapharov et al., 1998]. Understanding the mechanism of 
HID may improve the design and safety of pipelines. 
 
Various models of growth of internal cracks (i.e., far from the surface) that are 
pressurized by inflow of hydrogen have been considered, for example, by 
Goldstein et al. [1977 and 1985], Panasyuk et al. [1987], Balueva and Dashevski 
[1995], Vehoff [1997], and Toribio and Kharin [1998], Eliaz et al., 2004]. A 
similar HID model has been considered by Gonzalez et al.  [1997]. The model 
assumes that upon crack extension, the volume of the crack cavity increases 
resulting in the decrease of hydrogen pressure, which causes the crack to arrest. 
As the cavity continues to be filled with hydrogen, the crack propagation 
continues as well. Gonzalez et al. [1997] also conducted an experimental study 
with carbon steel in the form of pipe using ultrasonic inspection to measure crack 
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sizes.  Using the steady-state approximation for hydrogen diffusion, Gonzalez et 
al. [1997] obtained a closed-form solution for the crack growth rate, which agreed 
well with their experimental results corresponding to the initial stages of the crack 
growth. However, their model agrees less satisfactory with the experimental 
results for large crack sizes, which may not be very surpricieng. Indeed, as 
pointed out by by Goldstein et al. [1977], a theory based on the steady-state 
approximation ceases to be accurate for large crack sizes because the diffusion 
process becomes “slower” than the fracture growth. A transient HID model is 
needed for large crack sizes, when the delamination may become more 
dangenerous because due to the interaction with the free surface, hydrogen inflow 
may not not be needed anymore for the fracture growth and the growth may 
become unstable.  
 
In this paper, a transient model of a penny-shaped delamination controlled by a 
diffusion process is considered. We obtain the delamination size, velocity of 
growth, and time of incubation. We also present a quantitative analysis of the 
results for hydrogen diffusion and metal embrittlement. 
 
2. NEAR – SURFACE DELAMINATION 
 
2.1. Delamination kinetics 
 
Let a half-space z < 0 (e.g., a substrate of the base metal), saturated uniformly by 
fluid with concentration c0, be covered by a thin infinite layer of thickness h. 
Suppose a circular delamination of the initial radius, a0, appears in the interface, 
z = 0, at t = 0 (Figure 2). The covering layer is assumed to be thin compared to a0 
(h << a0).  As delamination develops, the crack opening, w, under the fluid 
pressure, p (Figure 2), can be determined in the asymptotic approximation of thin 
plates [e.g., Timoshenko and Goodier, 1970] as w(r) = pa4(1 – r2/a2)/(64D0), 
where D0 = Eh3/[12(1 − ν2)] is the plate flexural rigidity, E and ν are the Young 
modulus and Poisson ratio of the delaminated material. In the axisymmetric case, 
the potential energy of bending of a circular plate is U = − π p2a6/(384D0).  In the 
framework of beam (plate) asymptotic approximation [e.g., Rice, 1968], only the 
bending part of the strain energy contributes to the energy release rate, G. Hence, 
the rate of energy absorption by the growing delamination per unit length of the 
crack front can be expressed as G = − 1/(2πa)∂U/∂a. Therefore, because for a 
stably growing fracture, G = 2γ, the connections between the fracture energy, γ, 
crack radius, a, crack volume, V, and the fluid pressure, p, can be written as 
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Figure 2. Delamination growth under the pressure of the fluid 
accumulated in the crack. 

 
The constitutive relation, p = f(ρ), between the fluid pressure, p, inside the crack 
and fluid density, ρ = m/V, can be written in the form of 
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where Q(t) is the full fluid flux into the crack, the first integral in (2.6) represents 
the total gas mass accumulated inside the crack by time t, q(r, z, t) is the diffusion 
flux. In many cases [e.g., Goldstein et al., 1985], the hydrogen gas in the crack 
can be modeled as an ideal gas in isothermal conditions. Then, the constitutive 
relation p = f(ρ) becomes a linear function p = RTρ, where R = 8.314 J/(mole×°K) 
is the ideal gas constant and T is the gas temperature (in °K). Substituting 
expressions (2.1) for crack volume and critical energy release rate into (2.2), we 
arrive at the main kinetic equation 
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for the transient analysis of the quasi-stationary growth of a penny-shaped 
delamination. In this consideration, we further need one more relationship 
between functions a(t) and Q(t) that can be obtain by considering hydrogen 
(proton) diffusion in metall latice towards the propagating fracture (Figure 2). 
 
2.3. Diffusion flux into delamination 
 
If the flux density, q, is the result of diffusion into delamination, it can be found 
from the usual boundary value problem for the hydrogen concentration, c, in 
metal (expressed in moles per unit volume due to the chosen dimenison of R) : 
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where D is the diffusion coefficient of atomic hydrogen in metal. Then, 
q = −D∂c/∂z (z = 0, 0 ≤ r < a) and the full flux into the delamination can be 
determined from Q(t) in (2.2). If Q(t) is expressed through a(t), after substituting 
Q(t) into (2.3), the main kinetic equation for a(t) will be derived.  
 
In the case of hydrogen embrittlement, the second condition in (2.4), c(r, 0, t) = 0 
at 0 ≤ r ≤ a(t), means that if the pressure inside the delamination crack is not too 
large, the crack can be modeled by an ideal sink so that the molecular gas 
hydrogen accumulates inside the crack [e.g., Goldstein et al., 1977 and 1985; 
Gonzales et al., 1997; Eliaz et al., 2004], while the concentration of atomic 
hydrogen there is zero.  
 
In general, the boundary value problem (2.4) can only be solved numerically 
[Eliaz et al., 2004]. However, there are at least two extreme cases when 
asymptotic consideration allows one to determine c(r, z, t) and, then, the 
parameters of the delamination growth in the closed form. These are the cases of 
short, t << a2/D, and long times, t >> a2/D, where a2/D = td is the diffusion time 
scale, which is of the order of the relaxation time required to establish the 
equilibrium steady state for the hydrogen diffusion around the delamination. 
 
3. ASYMPTOTIC SOLUTION FOR LONG TIMES 
 
3.1. Asymptotic solution for long times 
 
If delamination growth is slow enough so that the delamination time, t, is much 
smaller than the diffusion (relaxation) time scale, td = a2/D, required to establish 
the steady state in the delamination proximity, at each moment, t, the diffusion 
flux, q, into the delamination can be found from the solution of the corresponding 
steady-state diffusion problem. We will refer to this as to the asymptotic solution 
for long times. Then, for each time, t, we should find the concentration function, 
c(r, z, t), which is harmonic (∇2c = 0) in the half-space, z < 0, and satisfies the 
boundary conditions from (2.4). 
 
The solution of this boundary value problem is well known [e.g., Sneddon, 1972]. 
In aprticular, the expression for the flux density, q = −D∂c/∂z (z = 0, 0 ≤ r < a), is 
given by q(r, 0, t) = (2/π)c0D[a(t)2 – r2]--1/2, so that the volumetric flow rate in 
(2.2) into the crack can be written as Q(t) = 4c0Da(t). Substituting this Q(t) into 
(2.3), we finally obtain the kinetic equation for the delamination growth driven by 
the ideal gas and controlled by diffusion: 



 6

∫=
t

dttaRTDcta
0

0
2 )(3)(

π
γ  (3.1) 

At the first stage, that is, during the incubation period, 0 < t < ti, the fluid diffuses 
into the delamination, accumulates inside it, and creates the pressure sufficient for 
starting the delamination growth. Since at this stage, a(t) = a0 = const for t ≤ ti , 
we can write from (3.1) the expression for the incubation time, ti , as follows:  
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The velocity, da/dt, of crack growth is obtained by differentiating both parts of 
equation (3.1) with respect to t:  da/dt = 3RTDc0/(2πγ) = a0/(2ti). This expression 
reveals that the delamination develops with a constant velocity. Such a stationary 
process of the crack growth is provided by the balanced increase of the gas 
pressure caused by the fluid diffusion into the crack and by the gas pressure 
decrease, caused by the increase in the volume of the growing crack. Of course, 
the velocity is not exactly constant but only with the accuracy of the higher 
assypmtoti terms that are neglected. In this approximation, time is considered to 
be a parameter and enters the equation set not through diffusion process, assumed 
to be fast, but through the kinetic equation (3.1). 
 
3.2. Asymptotic solution for short times 
 
The stationary solution for fluid flux into the crack is valid for long times, 
t >> a2/D, and provides an upper estimate for the growth time, t(a). Further 
insight can be gained by turning to a transient solution for the fluid flux. The 
leading asymptotic term for the fluid diffusion into the delamination for a short 
time, t << a2/D, is given by the one-dimensional approximation in z-direction 
(Figure 2), so that the fluid diffusion in the radial direction is only given by the 
quantities of the higher order with respect to t [Germanovich and Kill', 1985; 
Germanovich, 1986]. Accordingly, the first-order solution of the transient 
problem (2.4) can be found by considering the latter as independent of r and is 
well known [e.g., Carslaw and Jeager, 1992]. Then, for t < ti and z ≤ 0, 
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Once the delamination front reaches position a(t), the concentration function 
c = a(r, t) is asymptotically given by the same expression (3.3) where t should be 
replaced by t − τ(r), where τ(r) is the time at which the crack radius, a, reaches 
the value of r; so that τ(a) = a−1(τ) is the function inverse to a(t). Then, the flux 
into the delamination is given by q = −D∂c/∂z (z = 0, 0 ≤ r < a, t > 0), so that 
substituting expression (2.2) for Q(t) into (2.3), we obtain the kinetic equation for 
a(t) in the short time asymptotic approximation: 
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Noticing that a(t) = a0 during the incubation period, t < ti, we find from (3.4) the 
incubation time, ti. By this time, a sufficient gas pressure is accumulated in the 
delaminated space (opening) and the fracture starts growing at 
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Substituting ti from (3.5) into (3.4) and integrating by parts, (3.4) can be reduced 
to the well known Abel integral equation of the second kind [Polyanin and 
Manzhirov, 1998], which has the following solution: 
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where F(t) = (1/2){[2t1/2 – (t – ti)1/2]/ti
1/2 – (t/ti)arcsin[(ti

1/2/t1/2)]} + π/4. From (3.6), 
the delamination growth velocity is  da/dt = (1/2)[a0

2/a(t)][dF/dt +  
(π/4)(1/ti)(a2(t)/a0

2)]. In this case, the delamination velocity is not constant. 
 
 
4. EXAMPLES  
 
Figure 3 shows the dependence of the normalized incubation time, it ′  = ti / t0, on 
the dimensionless fluid concentration in the material, c0′ = c0/ c*, where 
c* = 2γ /(a0LRT). Curves 1 and 2 in Figure 3 correspond to the incubation times in 
the long and short time approximations, respectively. Line 3 shows the Pade 
asymptotic approximation.  
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Figure 3. Dependence of dimensionless incubation time, t′ = ti/t0, 
on normalized hydrogen concentration, c′ = c0/c*, in the 
approximation of long (curve 1) and short (curve 2) times. 
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Figure 4 shows dependence of the normalized delamination radius, a′ = a/a0 , on 
the normalized growth time, t′/t0, in the long (lines 1) and short (lines 2) time 
approximation for three values of the initial fluid concentrations: (a) large, 
c0′ = 3.33, (b) intermediate, c0′ = 2/3, and (c) small, c0′ = 0.133. 
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Figure 4. Dependence of the 
normalized delamination radius, 
a′ = a/a0 , on the normalized 
growth time, t′/t0, in the long 
(lines 1) and short (lines 2) time 
approximation 
 

 
5. CONCLUSIONS 
 
Our results show that in the long-time asymptotic approximation (based on the 
quasi-static solution), the diffusion-controlled delamination propagates with a 
finite velocity, which remains constant during the growth. In this paper, we 
determine a maximum critical concentration that limits the use of the quasi-static 
solution. A transient solution, representing a short-time asymptotic 
approximation, is used when the concentration of gas exceeds the critical 
concentration. We then match these two end-member cases by using the method 
of Pade approximations and present closed-form solutions for both internal and 
near-surface diffusion-controlled crack propagation at different time scales. 
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An application of the developed asymptotic modes is demonstrated on the 
example of propagation of the near-surface and internal cracks driven in metal by 
the diffusion of the atomic hydrogen (protons). We show that for typical 
properties of low alloy steels in hydrogen embrittlement conditions, the 
approximation of long times is usually valid. However, depending upon the 
parameters, the metal durability (life-to-failure) varies rather considerably, i.e., 
from hours to decades. 
 
The obtained results reveal some intriguing features worth checking 
experimentally. For example, the main kinetic equations for growth of the near-
surface (delamination) and internal fractures [Goldstein et el.1985] are essentially 
identical, despite the difference in the problem geometry. Consequently, although 
the driving pressures for identical axisymmetric fractures located far and close to 
the half-space boundary are very different, their radii and velocities are exactly 
the same. This, perhaps, indicates that the approach adopted in this work is 
sufficiently robust to simulate delaminations of not necessarily small thicknesses. 
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