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Fracture toughness measurement of thin nanoporous films on stiff substrates

D.J. Morris,† R.F. Cook
National Institute of Standards and Technology, Gaithersburg, Maryland USA

Nanoporous low-dielectric-constant films constitute a class of materials that are 
plagued by fracture concerns and are not amenable to traditional fracture 
toughness measurement techniques. An indentation fracture toughness 
measurement technique has been developed for these materials. The experiment 
utilizes nanoindentation in combination with cube-corner indenters which create 
flaws are on the scale of the film thickness, about a micrometer.  Interpretation of 
experimental results are a far-reaching generalization of the traditional Vickers 
based indentation test used for ceramics at the mesoscale. Cube-corner 
indentation fracture is dominated by crack-wedging effects that are not important 
for Vickers indentation. Film-substrate elastic coupling is very important, and is 
manifested in three distinct ways. After film-substrate coupling phenomena are 
identified, they are combined with acute indentation fracture models to form a 
complete thin-film indentation fracture mechanics model. The fracture toughness 
of two materials have been measured to be 0.09 MPa m1/2 and 0.05 MPa m1/2.

Variables

a contact radius  indenter axis-to-face angle
c surface crack length  film stress
c´ crack depth  SIF amplitude
E plane-strain elastic modulus  Poisson’s ratio
G mechanical energy release rate (MERR)  shear modulus
H hardness
K stress-intensity factor (SIF) Super- and sub-scripts

 Crack aspect ratio A apparent

P indentation load CH channel crack
R fracture resistance C contact
s Zak-Williams stress-singularity exponent F film
t film thickness I indentation
T fracture toughness PC partially-cracked
W wedginess S substrate

TH threshold
 Dundurs elastic mismatch parameter (1 of 2) W wedging
 Dundurs elastic mismatch parameter (2 of 2)
 channel crack geometry factor
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1 Introduction 

Indentation is widely used to locally probe elastic modulus, hardness [1], 
viscoelastic and creep properties [2], and interfacial fracture (adhesion) [3]. Yet 
quantitative measurements of the fracture toughness of thin films remain difficult, 
despite considerable effort in the contact and fracture community. The fracture 
toughness of some thin films adhered to silicon have been found by consideration 
of the equilibrium crack spacing under uniform tension, induced by bending of 
the substrate [4]. This technique relies on sufficient strain transfer from the 
substrate to the film (by strain match at the interface), implying that film cannot 
be too compliant relative to the substrate. Other attempts at measurement of the 
fracture properties in small volumes rely on microfabrication of special structures
[5-7].

It is therefore desirable to develop a fracture toughness measurement method that 
uses a mechanical probe, with little or no special specimen preparation. This is 
why indentation fracture toughness estimation [8] has garnered so much attention. 
Indentation by a sphere, or a sharp Vickers diamond is typically used for brittle 
glasses and ceramics. Sharp indentation has the advantage that it nucleates its own 
flaws, which obviates the need for pre-existing surface flaws (as would be needed 
in Hertzian – cone-cracking toughness estimates, e.g. [9]). The hurdle, then, is 
nucleation of a crack. While the commonly used Vickers probe cannot nucleate 
radial cracks at the ≈ micrometer-scale needed to study ≈ micrometer-scale
features, a much more acute probe, such as the corner of a cube, can. [10]

To this end, the indentation fracture toughness technique has been extended to 
thin films, situated on a substrate that is relatively stiffer and tougher. The 
materials of interest in this work are low-dielectric (low-) thin films. Recent 
work [11] has shown that the indentation fracture response (IFR, the relationship 
of the surface crack length to the indentation load) for low- films followed no 
clear scaling relationships, and that the thickness of the film played a very strong 
role. All of the fracture data could be reconciled (meaning, one value of fracture 
toughness could be used in modeling all indentation fracture data from one 
material) by incorporation of substrate effects. 

Here, the indentation fracture theory and cube-corner indentation results are 
briefly reviewed. Then, the IFRs of two other sharp probes on the same films are 
presented and compared to the cube-corner IFR. These other probes are less acute 
than the cube-corner, but more acute than the Berkovich indenter. The 
implications for fracture toughness measurement are then discussed.

2 Indentation fracture at the micro- and nano-scale 

In small-force instrumented indentation (nanoindentation), the Berkovich probe 
geometry is commonly used. The Berkovich is a three-sided pyramid with an 
axis-to-face angle of 65.3°. The Berkovich and the four-sided pyramidal Vickers 
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are both equivalent to the axisymmetric equivalent indenter (the right cone with 
the same depth-to-displaced volume or projected-area-to-contact-radius 
relationship) of axis-to-conical-surface angle of 70.3°. This simplification is 
frequently invoked in theoretical and numerical modeling, as it reduces a three-
dimensional problem to a two-dimensional problem. The essential equivalence 
between the Vickers and Berkovich geometries in the context of indentation 
fracture has been shown [12].

However, it has also been shown that for the cube-corner geometry, the probe 
drives fracture by wedging the cracks apart [13], instead of driving fracture by 
residual stresses caused by plastic deformation gradients. As in Hertzian cone 
cracking, the driving force for fracture is only present when the indenter is 
pressing on the material. But, as in traditional sharp (for example, Vickers) 
indentation fracture, the indenter is able to nucleate flaws from the plastic 
deformation at the contact site. In fact, indentation wedging has been observed 
with a Vickers indenter in fused silica [14]; the residual indentation stresses in 
that material are evidently so small that the wedging effect was dominant. 

The wedging phenomenon is fortuitous, as the materials under test have a great 
deal of free volume and are unlikely to store residual stress as a consequence of 
the plastic deformation. (Indentation residual stresses are considered separately 

from blanket film residual stresses). Figure 
1 is a representative scanning-electron 
micrograph of a cube-corner indentation in a 
low film. Well-formed radial cracks of 
length c can be seen. 

The total elastic stress field of the indenter is 
the sum of two characteristic fields: contact 
and wedging. The contact field is that 
characteristic of the frictionless linear elastic 
contact solution. While the particulars of the
interior stress field depend on the pressure 
distribution at the surface, at a little distance 
from the contacted zone the stress fields are 
essentially that of the Boussinesq point-load 
stress field, with stresses that fall away as 
the squared reciprocal of distance. The full-

field analytical solutions of the Boussinesq field may then be used to estimate the 
SIFs of the contact stress field. Radial, surface located cracks are suppressed by 
the contact’s compressive hoop stresses.

The wedging stress field is a consequence of plastic deformation in the contact 
zone, but it is not residual stress induced by plastic deformation gradients. The 
surface of the probe, not being parallel to the original surface of the deformed 
material, imposes dipole forces oriented in the plane of the original surface. These 
forces induce a stress field that is now hoop-tensile at the surface, which is the 

c

Figure 1. Scanning electron image of a 
cube-corner indentation on a low-k
film. The crack length c is shown.
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wedging stress field. The wedging field is of shorter range, falling away as the 
cubed reciprocal of distance, which is characteristic of the stress field of a 
misfitting inclusion, as it imposes no net force on the indented body [15, 16]. The 
total action of the indenter is the sum of SIFs for both contact and wedging fields
[17]

 I W C W C
PC PC PC PC PC3/ 2

ln 2      
P

K K K c a
c

. (2.1)

It as been suggested experimentally [14] and theoretically [18] that W and C are 
both strong functions of Poisson’s ratio; but, the ratio of the two is effectively 
independent of Poisson’s ratio and is dependent on probe acuity to good 
approximation. This ratio is the wedginess,

       W C, , 1.8cotW           (2.2)

where the factor of 1.8 was found from the experimental determination of W for 
the cube-corner [13] and a scaling analysis [18].

3 Film stress

The SIFs for a cracked film, under 
uniform tensile stress and bonded to a 
rigid, infinitely thick substrate, were first 
considered in detail by Beuth [19]. 
These results were then extended later to 
elastic-plastic substrates [20] and elastic 
substrates with finite thickness [21]; 
however these more complicated 
analyses are not needed here. A 
simplified equation [22] derived from 
Beuth [19] for the SIF of a surface-

located crack propagating towards the interface is
1 2 1 2

F 1 2
PC 1.987 1

        
   

s
c c

K t
t t

. (3.1)

s is the Zak-Williams stress singularity exponent [23], and is a function of the 
Dundurs elastic mismatch parameters  and  [24], which characterize the elastic 
mismatch between film and substrate

   
   

F S S FF S

F S F S S F

1 2 1 2
;  

2 1 2 1

   
 

   

  
 

   
E E

E E
. (3.2)

 is a measure of plane-strain modulus mismatch, and  is related to differences 
in compressibility. For each ,  pair there is a corresponding s that characterizes 
the strength and shape of the film stress SIF [23]. Figure 2 is a map of s on the , 
 plane. Also shown is a parallelogram, enclosing all combinations of Poisson’s 
ratio such that 0 0 5.  [24]. When there is no elastic mismatch, s = 0.5. In the 
limit FE << SE and F 0  , then 0s  . 

Figure 2. s in the ,  plane, within the 
parallelogram defined by 0 <   < 0.5. 
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One recognizes that, if s = ½, then Equation (3.1) is reduced to the SIF for a 
plane-strain crack propagating under the influence of uniform stress. Deviations 
of s from ½ characterize distortions in the SIF as the crack approaches the 
substrate. For s < ½, F

PC 0K   when the crack tip just reaches the interface. 

Therefore, F
PCK  has a maximum within the film. For 0s  , this maximum in the 

middle of the film at F 1 2c t  . 

4 Substrate attenuation

A common problem in 
nanoindentation is the estimation 
of the plane-strain modulus of a 
film, FE , on a substrate with 
significant elastic mismatch. To 
this end, many theories have 
been developed that relate the 
apparent modulus AE  (that 
perceived by appropriate 
analysis) as some combination of 
the film and the substrate. As the 
indenter penetrates more deeply 
into the film, the relative 
contribution of the substrate 
becomes greater. Then, with an 
appropriate model, e.g. [25, 26]

and knowledge of the properties of the substrate, apparent moduli may be 
extrapolated to zero penetration depth.

The consequence of film-substrate elastic mismatch on indentation fracture SIFs
must also be taken into account. Departure of AE  from FE  indicates that strain 
energy is being partitioned between film and substrate. The strain energy that has 
been lost to the substrate (which, may be thought of as constraint on the 
development of strain in the film) is unavailable to drive fracture. Figure 3 is a 
demonstration of the variation of apparent modulus AE and the fraction of strain 
energy contained in the film with equations previously developed [22] for a 
hypothetical F 5 GPaE  low- film on silicon ( E = 165 GPa). This shows that 
in the rigid substrate limit, the fraction of strain energy in the film varied as 

F AE E . As shown in Figure 3, the strain energy in the film has been halved when 
AE  is ≈ 10 GPa, which is still very far removed from the properties of the 

substrate. In dynamic nanoindentation [27] the modulus is monitored during 
indentation and therefore F AE E is known as a function of load. Then, KI is 

attenuated by F AE E . The substrate attenuation correction can be as large as 
60 % [22].

Figure 3. An example of substrate attenuation for 
indentation of a compliant film (E = 5 GPa) on a 
silicon substrate (E = 165 GPa). 
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5 Fracture toughness measurement with a cube-corner

With all SIFs identified, the fracture equilibrium equation for the partially-
cracked film is [22]

 
1 2 1 2F

1 2
A 3 2 W W

PC PC

1 ln 2 1.987 1
s

E P T c c
c a W t

E c t t


 


                
 

. (5.1)

The left side is the attenuated KI, and the right side is the combined action of film 

toughness and film stress. The quantities  ,  W
PCT  and  W

PC   are found from 

least-squares minimization. The unknown W
PC  is then eliminated by independent 

measure of the film stress to estimate T. Two types of low- films (Type I and II;
dielectric and mechanical properties are in Table I) were tested. As an example, 
the fracture data are shown in Figure 4a for Type I low- film. The vertical
dashed lines correspond to 150 % of the film thickness, as a surface crack length 
twice the film thickness has probably developed into the channeling geometry 
[28]. The minima in the attenuated KI are indicative of the maximum in F

PCK  for a 

compliant film (s < ½).

TABLE I. Electromechanical properties and thickness of low- films. 

Material 
t

(m)


(MPa)
HF

(GPa)

FE
(GPa)

Type I 2.2 2.4, 1.6, 1.2 ≈30 0.4 3.1

Type II 2.8 2.0, 1.5, 1.0, 0.5 ≈60 1.5 9.3

Figures 4b plots the experimentally determined IFRs, and IFR simulations for 
both the partially-cracked and channeling geometries. The simulations 
numerically solve Equation (5.1), with some assumptions about the evolution of a
and F AE E with indentation load [22]. The results are listed in Table II; film 

Figure 4. Left: (a)  fits of Equation (5.1) for Type I film. Right: (b) Experimental data and 
simulation of crack length vs. load.
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stresses used to calculate the toughness 
were representative stresses (Table I) 
provided by the supplier (ISMT). 
Uncertainty bands listed in Table II 
correspond to the uncertainty derived from 
the fitting procedure. The value and 
uncertainty of toughness are the mean and 
span of the estimates (one from each 
thickness).

6 Indentation fracture responses of 
other indenter shapes

As has been previously established, the 
indenter acuity strongly affects the 
threshold load for cracking. This, of 
course, is why the cube-corner is useful 
for indentation fracture. Unfortunately, the 
increased damage is not limited to radial 
cracks; the cube corner is associated with 
greater plastic deformation and 
enhancement of competing fracture 
systems, such as laterals and delamination, 
reducing the range over which 
measurements can be made. Less 
aggressive geometries may also produce 
satisfactory indentation fracture results in 
small volumes. Quantitative estimations of 
toughness from geometries other than the 
cube-corner awaits experimental 
measurements of W (and an experimental 
test of Equation (2.2)). Still, some 
preliminary conclusions about the efficacy 
of probes other than the cube corner may 
be formed by comparison of IFRs of 
different probes in the same thin film.

Figures 5, 6 and 7 are the experimental 
and simulated IFRs for Type I material of 
2.4m, 1.6 m and 1.2 m thickness 
(respectively). Certainly the cube-corner is 
able to generate more usable data; PTH is
small for the more acute probes, but the 

upper load limit for radial cracking (when spalling and delamination occur) is 
approximately equal for all probes. The simulations reproduce the experimental 
data reasonably well, and suggest that there is an approximate upper limit to radial 

Figure 5. IFR (data and simulation) of three 
probes on 2.4 m thick Type I low-. 

FFigure 6. IFR (data and simulation) of three 
probes on 1.6 m thick Type I low-.

Figure 7. IFR (data and simulation) of three 
probes on 1.2 m thick Type I low-.
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crack length at 2tF, before competing fracture modes interfere with radial 
cracking.

TABLE II. Low- film indentation fracture fitting results.

Material 
t

(m)

W
PCT 

(MPa m1/2)

W
PC 

(MPa)
 s

T
(MPa m1/2)

2.4 145 ± 6 0.48 ± 0.02
1.6 154 ± 8 0.42 ± 0.03

Type I

1.2
0.25 ± 0.01

189 ± 8 0.44 ± 0.02
0.05

0.047 ± 
0.005

2.0 366 ± 42 0.44 ± 0.05
1.5 395 ± 47 0.50 ± 0.01
1.0 440 ± 59 0.57 ± 0.03

Type II

0.5

0.58 ± 0.06

361 ± 87 0.58 ± 0.15

0.12
0.087 ± 
0.003

The threshold indentation loads were remarkably consistent across all three film 
thicknesses. The threshold load for all film thicknesses are plotted in Figure 8. As 
W depends linearly on cot , we guess that the threshold load is a function

 TH cot
n

P B  , (5.2)

where B is a material (and possibly residual stress [29]) -dependent force, and n
characterizes the sensitivity to indenter acuity. The best-fit coefficients are 
B =  0.17 ± 0.01 mN and n = -4.0 ± 0.1. The exponent n = -4.0 is striking in that 
the threshold load, for fixed indenter acuity, varies as the fourth power of 
toughness [30]. 

7 Conclusions

The experiment and theory of 
wedging indentation fracture as 
applied to thin, brittle, compliant 
thin films is briefly reviewed. 
With film stress SIFs appropriate 
to low- films on stiff substrates, 
and indentation SIF attenuation, 
differing IFRs can be described 
with one value of T.  Two films 
have been tested with cube-
corner indentation, and with an 
estimate of the residual film 
stresses, the toughness of the 
films are estimated at 
approximately 0.09 MPa m1/2 and 
0.05 MPa m1/2.

Furthermore, the efficacies of indenting probes that are less acute than the cube-
corner are explored with regards to low- indentation fracture. Threshold loads 
are found to vary as the reciprocal fourth power of cot It is found that the range 

Figure 8. Threshold load as a function of cot .
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over which useful data can be generated is significantly lessened. However, study 
of the less acute indenters should continue, as they may be better suited to length 
scales greater than  1 m but less than  1 mm, which is the usual scale of a 
Vickers or Berkovich indentation flaw. 
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