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1. Introduction 
 
Reliability of interface junctions is the key problem in many industrial 
applications. To model adhesion, strength and fracture parameters of interface 
junctions the multiscale crack bridging concept is used. In the frames of this 
concept is supposed: there are bonds of the different scales (intermolecular forces, 
molecular bundles, fibers, nanofibers) between joined materials (the interface 
layer); any zone of weakened bond in this layer is considered as the interface 
crack with distributed nonlinear spring-like bonds between the crack surfaces 
(bridged zone). The bonds properties on the different scales define the stress state 
at the crack bridged zone and, hence, the reliability and the fracture toughness of 
the interface junction. In a general case, the size of bridged zone of the interface 
crack is comparable to the whole crack size. The conditions of a crack limit 
equilibrium and quasi-static growth for the case of the large scale bringing zone 
of the crack must be considered to model quantitatively the bridging effects. The 
quantitative analysis of the interface bridged crack growth consists of the 
following steps: 1) development the multiscale bond deformation law; 2) 
evaluation of stresses around the crack; 3) development and application the non-
local crack growth criterion to analyze the fracture parameters of the interface 
junction. 
Let’s consider for simplicity the plane elasticity problem on a straight crack 
( x ≤ ) at the interface ( ) of two dissimilar joint half-planes. Assume that 
the uniform load 

0y =

0σ  normal to the interface acts at infinity. The crack surface 
interaction exists in the end zones, ( )d t x− ≤ ≤ . The size of the interaction 

zone  and the bond stresses depend quasi-statically on time  due to the 
possibility time changing of the bond properties. As a simple mathematical model 
of the crack surfaces interaction it is assumed that the spring-like bond, see details 
in [1], act through out the crack end zones at any level of bridging and the total 
traction 

( )d t t

( ),x tσ  arising in the bonds are 
 
 2( , ) ( , ) ( , ) , 1yy xyx t x t i x t iσ σ σ= − = −

)

 (1) 
 
where ( ,yy x tσ  and ( ,xy )x tσ  are the normal and shear components of the bond 
tractions, - is the number of the different levels of bridging interactions. n
The crack opening, , at ( ,u x t) ( )d t x− ≤ ≤  is determined by the prescribed 
bond deformation law 
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where - is the number of the different bridging levels, n ( ),s x tκ - is the bond 
stiffness on the bridging level with number of . s
The bridged stresses can be defined using the approach proposed in [1-3] and 
based on the singular integral-differential equations (SIDE) method. The solution 
of the system of the SIDE can be obtained on an every bridging level and the total 
bridging stresses are the sum of the contribution of the every level and depend on 
the external loads and the position along of the crack surface. 
The kinetic destruction of bonds due to elevated temperature and the aggressive 
agents is accounted on the every bridging level. The bonds kinetic model is based 
on the Zurkov’s fluctuation model. 
 
 
2. Fluctuation bond kinetic 
 
According fluctuation theory of fracture [4] the lifetime of a body bτ  under the 
external tension loading σ  is the exponential function 
 

 
( )U
kT

b oe
σ

τ τ=  (3) 
 
where 0τ  is characteristic time (10-13-10-12 s.),  is the Boltzmann constant, T  is 
absolute temperature, 

k

( )U σ is stress state dependent activation energy. 

The function ( )U σ  for wide range of external load and temperature is linear 
one 
 
 ( ) oU Uσ γσ= −  (4) 
 
where is the energy of the interatomic bond destruction, γ is the coefficient 
depends on the material microstructure. 

oU

The value σγ=A is the work of the bond deformation in supposing that the stress 
distribution over the bonds is uniform. Actually, the stress distribution over the 
bonds in the end zone of the crack is non uniform [1-3]. Seeing that we will use 
the relation (4) in the following form 
 
 ( ) ( )oU U A xσ = −  (5) 
 
where ( )A x  is the work of the bond deformation at the point x  of the crack end 
zone and suppose that the bond lifetime ( )xbτ is determined by the formula (3). In 
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connection with, the lifetime of bonds in the bridged zone of the crack is the 
function of the bond position. 
Let’s assume that the time decrease of the bonds surface density  is 
governed by the equation 

( , )n x t

 

 ( , ) ( , )
( )b

dn x t n x t
dt xτ

= −  (6) 

 
The solution of the equation (6) is 
 

 ( )
0( , ) b

t
xn x t N e τ

−

=  (7) 
 
where ( )b xτ  is the lifetime of the bond. 
The time decrease of the bonds surface density can be modeled by the changing of 
the bonds properties in the weakened zone. Denote by sk  the initial bond stiffness 
at the bridging level . Then the effective stiffness of bonds per unit area in the 
crack end zone, 

s
( ,s )x tκ , is determined as follows 

 

 ( )
0( , ) ( , ) b

t
x

s s sx t k n x t e τκ
−

= = χ

0

 (8) 
 
where 0s sk Nχ =  is initial effective stiffness of bonds in the crack end zone. 
The work of bond deformation (on the unit of the body thickness) over part of the 
bridged zone of the crack by size  is equal to dx
 

  (9) 
( ) ( )

( , ) ( ) ( )
y xu x u x

yy y y xy x x
o o

dU x t u du u du dxσ σ
⎡ ⎤

= +⎢
⎢ ⎥⎣ ⎦
∫ ∫ ⎥

 
Then, the work per one intermolecular bond is 
 

 ( , )( )
n

dU x tA x
dN

=  (10) 

 
where dndN n ε= ,  is number of the bonds over size , ε is the number of 
monomeric links between the crack surfaces. 

dn dx

Suppose that the bonds are the chains of polymer molecules and size of one 
monomeric link is a . If the bond elongation under loading is much less of the 
value a  then the number of the monomeric links between the crack surfaces are 
 

 
2 2( ( , ) ( , ) )y xu x t u x t

a
ε

+
=

1/ 2

 (11) 
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The relations (8)-(11) enables us to model bond rupture kinetics in the crack 
end zone by means of the bonds stiffness variation in time. 

 
 

3. Non-local criterion of bridged crack growth 
 
The non-local fracture criterion [1, 2, 5] is used to evaluate the fracture toughness 
and the critical external loading in the frames of the bridged crack model. The 
state of the crack limit equilibrium corresponds to the following condition (  is 
the total potential energy, 

Π
( )ijw ε  is the density of the deformation energy, ijε  are 

the components of the strain tensor; i it u,  are the tractions and displacements at 
the body boundary ;  is the density of the strain energy of the bonds in the 
crack bridging zones, u  is the crack opening at the bridging zones of area ,  is 
a crack length) 

es ( )uΦ

is

 

 

( ) ( ),,

( ) ( ) 0ij i i
v s s

G dG d

e i

bondtip

w dv t u ds u dsε
⎡ ⎤∂Π ∂ ∂

− = − − − Φ =⎢ ⎥
∂ ∂ ∂⎢ ⎥⎣ ⎦

∫ ∫ ∫  (12) 

 
The terms in this relation represent the strain energy release rate at creation of a 
new crack surface, , and the rate of the energy absorption in the crack 

bridging zone, , respectively. Note, that within the framework of the 
model the rate of the energy absorption depends on the bridging zone size and 
bond characteristics. The equilibrium bridging zone size is not assumed to be 
constant. It can be determined from condition (12) while the searching for the 
critical load needs additional conditions of the bond rupture. In the general case 
the strain energy release rate can be defined through the stress intensity factors. 

( ,tipG d )
)

)

( ,bondG d

The condition of the crack tip limit equilibrium (12) can be rewritten as 
follows 
 
 ( ) (tip cr bond crG d G d, = ,  (13) 
 
Condition (13) is necessary but insufficient for searching for a limit equilibrium 
state of the crack tip and the bridging zone. This condition enables us to 
determine the bridging zone size, , such that the crack tip is in an equilibrium 
at the given level of the external loads. To search for the limit state of both the 
crack tip and the bridging zone within the framework of the model one should 
introduce an additional condition, e.g., the condition of bonds limit stretching at 
the trailing edge of the bridging zone 

crd

0 crx d= − ( crδ  is the bond rupture length) 
 
 2 2 1 2

0 0 0( ) ([ ( )] [ ( )] )x yu x u x u x crδ/= + =  (14) 
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Based on these two fracture conditions the regimes of the bridged zone and the 

crack tip equilibrium and growth are considered: 

1) the crack tip propagates and the size of the bridged zone  increases 
without rupture of the bonds if 

d

 

  (15) 
( , ) ( , ) ( )

( ) (
tip bond

cr

G d G d a

u d bδ

≥⎧
⎨

− <⎩ )

)

 
where  is the energy release rate , is the rate of the energy 
dissipation by the bonds,  is the half of the crack size, 

( , )tipG d ( , )bondG d
(u d− is the crack 

opening at the trailing edge of the bridged zone, crδ  is the bond limit stretching; 

2) the size of the bridged zone decreases due to rupture of the bond without 
the crack tip propagation if 

 

  (16) 
( , ) ( , ) ( )

( ) (
tip bond

cr

G d G d a

u d bδ

<⎧
⎨

− ≥⎩ )

)

 
3) the crack tip propagates with simultaneous bond rupture at the trailing 

edge of the bridged zone if 

 

  (17) 
( , ) ( , ) ( )

( ) (
tip bond

cr

G d G d a

u d bδ

≥⎧
⎨

− ≥⎩
 
The last case corresponds to quasi-static crack growth because the both fracture 
conditions are fulfilled. 
The critical external loads, crσ  the end zone size  and the adhesion fracture 
resistance at the crack limit equilibrium state for the given crack length and bond 
characteristics can be determined from the solution of Eqs. (13) - (14). 

crd

 
 
4. Two-scale bridging zone 
 
Let’s consider the application of this criterion in the case of two-scale bridging. 
The adhesion junction of two semi-infinite plates is considered and it’s assumed 
that there are two scale of bridging: 1) the bridging due to adhesion interaction 
between pristine materials of these plates; 2) the bridging due to the artificial 
interface layer of a polymer which is introduced to improve the adhesion. 
Supposing also that on the first bridging scale the fracture toughness is the 
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constant value of  and bonds properties do not depend on time on the both 
scales. In this case the relation for 

cG

( ),bondG d  can be written as follows [5] 
 

 
( ) ( )( ) ( ) ( )y x

bond yy xy b c
d

u x u xG d u u dx G Gσ σ
−

∂⎛ ⎞∂
, = + − +⎜ ⎟∂ ∂⎝ ⎠

∫  (18) 

 
where  the density of deformation energy allocated at break of the bond at the 
trailing edge of the crack end zone 

bG

 

  (19) 
0

( )
cru

bG uσ= ∫ du

 
The analytical consideration of the proposed criterion can be performed only for 
the case of the identical properties of the materials of planes and the bonds with 
the rectilinear law of the bond stress. In this very simple case the normal bridged 
stresses in the crack end zone are prescribed 0( ( , ) )x t Pσ = , uniformly distributed 
along the end zone and independent on the crack opening and time. The normal 
displacements of an upper crack surface for this problem  are given in [6]. 0( )u x

In the case small scale bridging condition we obtain from Eqs. (13) - (14) 
of the fracture criterion the critical end zone size which is independent on the 
crack size in a small scale bridging limit ( see details in [5, 7]) 
 

 
2

0 0
0

1 , ,
8

cr c
cr

b

Ed d d d
P G

Gπ δη η η⎛ ⎞
⎜ ⎟∞ ⎝ ⎠

= = + − = =  (20) 

 
and the critical external stress ( E  is Young modulus of material) 
 

 ( ) ( )01 b ccr
cr

E G GEPδσ η
π π

+
= + =  (21) 

 
The size and the shape of the crack end zone do not change in the case of small 
scale bridging, therefore, the condition of autonomy of the end zone is satisfied 
and the energy absorbed to bonds in the end zone is equal to the energy released 
while breaking the bonds at the edge of the end zone. Thus, the total flow of the 
energy to the crack tip is spent on formation of a new surface of the crack. For 
this reason relationships (20-21) coincide with results which was obtained in [8] 
on the basis of the two-parametric fracture criterion with the first force condition 
of fracture , where  is the SIF due to an external loading,  is 
the SIF due to bonds and  is the matrix toughness. Noted that in the force 
fracture criterion [8] the work of bonds in the crack bridged zone is neglected and 
for the large scale bridging the noticeable difference is observed. 

0 bK K K− = Ic 0K bK

IcK
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 In the case of the uniform bridge stress it’s possible to get the analytical 
solutions for the critical end zone size and the external stresses also for the large 
scale bridging case [5, 7]. The dependencies of the critical end zone size 

0crd d vs the critical crack size 0cr dλ = is given in Fig. 1. It’s interesting to 
note, that for materials with a weak interface ( 0.5)η < the critical end zone size is 
increasing during the crack growth (craze formation). 
The dependencies of the apparent adhesion fracture energy ( crσ  is defined from 
the solution of the system of equations (13)-(14)) 
 
 2( ) / ,ext ext ext

c c crG K E K σ π= =  (22) 
are shown in Fig. 2. As the crack length increases the apparent adhesion fracture 
energy tends to the constant value. 
We shall further consider sub-critical growth of a crack with the bridging zone, 
assuming that an initial slit of the size  without bonds is initially made and 
the crack bridging zone of the size  is forming as the external loading 
monotonically increases. Then 

02 ≥ 0
2d
( )0 0/t d= + . Let the external load change in 

such a manner that at each current size of the crack bridging zone the condition 
(13) is satisfied, and the crack opening at the edge of the bridging zone does not 
exceed the critical value (condition (16b)). 
As the external load increases a sub-critical growth of the crack occurs, and the 
size of the crack bridging zone reaches its critical value provided the condition 
(14) holds. To maintain a further quasi-static crack growth further, it is necessary 
to reduce the external loading; in this case the equations (13) and (14) are 
considered simultaneously. The curves for the sub-critical crack growth ( 1η = ) 
are presented in Fig. 3 where ( )0 /d dλ = + 0

i

 is a relative crack size, and 

0/ , 1...5,i i d iλ = =  is a size an initial slit without bonds. For example, (see 
Fig. 3) if 2 0.463λ =  then under the increasing of the external load the initial slit 
will grow from 2λ λ=  till the intersection of the sub-critical crack curve with the 
curve of the critical loads. 
 
 
5. Conclusion 
 
The model of the interface crack with multiscale bridged zones enables one to 
study the sensitivity of the characteristics of the crack state and its limit 
equilibrium to the bond deformation curve without restrictions on the crack length 
scale. Hence, one can perform modeling of the behavior of nano-micro-meso and 
macrocracks taking into account the possible scale dependence of the bonding 
mechanisms and appropriate variations of the effective bond deformation law. 
The application crack growth criterion leads to a classification of the possible 
regimes of the interface crack growth in dependence on the parameters of the 
bond deformation curve and crack scale. 
Work was partly supported by RFBR, grants numbers are 08-01-00696 and 08-08-00798 

 7



References 
 
[1]. Goldstein R.V., Perelmuter M.N. Modeling of bonding at the interface crack, 
International J. of Fracture, 1999, vol.99, N 1-2, pp.53-79 
 
[2]. Goldstein R.V., Perelmuter M.N. An interface crack with bonds between the 
surfaces, Mechanics of Solids, 2000, Vol.36, No.1, pp.77-92. (in English) 
[3] Goldstein R.V., Perelmuter M.N. On an interface crack growth, In: Mechanics 
of Deformable Solid, the book of the papers devoted to 90th birthday of 
academician Ishlinski, 2003, pp.245-262 (in Russian) 
 
[4]. S. N.Zhurkov, Kinetic concept of the strength of solids, Intern. J. Fract. 
Mechanics, v.1, p.311-323, 1965 
 
[5]. Perelmuter M. A criterion for the growth of cracks with bonds in the end 
zone, Journal of Applied Mathematics and Mechanics (PMM), 2007, vol. 71, N1, 
pp.137-153 (in English) 
 
[6]. Panasyuk V. V. Limiting Equilibrium of Brittle Solids with Fractures. 
Michigan Information Service, Detroit, 284 pp. (1971) 
 
[7]. Perelmuter M. N. Fracture criterion for cracks with bridged zone, In: 
Proceeding of IUTAM Symposium Asymptotics, Singularities and 
Homogenisation in Problems of Mechanics, University of Liverpool, UK, 8-11 
July 2003, pp. 313-322 
 
 [8]. Cox B N and Marshall D B Concepts for bridged cracks in fracture and 
fatigue, Acta metal mater. (2), 341-363 (1994) 

0 1 2 3
0,0

0,2

0,4

η=2

η=1

η=0.5

η=0.25

η=0.125

η=0

λ

dcr/d0

 

 

 
Figure 1 Critical bridging zone size vs. the critical crack size 
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Figure 2 Apparent adhesion fracture energy vs. the crack length 
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Figure 3 Curves of the sub-critical crack growth, 1η =  
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