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Abstract 
Barenblatt & Botvina have pioneered dimensional analysis arguments to show 
that Paris' power-law shows "incomplete similarity", and the Paris' parameters C 
and m are not true material constants. We generalize the approach to explore the 
functional dependencies of m and C on more dimensionless parameters than 
Barenblatt & Botvina, and more experimental results, for materials including both 
metals and concrete. We discuss the size-scale dependencies of m and C which 
are quite different for the two class of materials, but explain known empirical 
correlations between the constants C and m. 
 
1 Introduction 
 
More than 40 years ago, Paris and Erdogan [1] suggested using the elastic stress-
intensity factor range, ∆K, to obtain the rate of crack advance per cycle, da/dN, a 
proposal that received a strong opposition from the scientific Community (see 
[2]). Actually, other authors had proposed special laws, and Paris' main 
contribution was to release the exponent in a power-law form, with m as a free 
parameter, since he had collected experimental data where m seemed to vary 
between 3 and 4, according to the following equation: 
d
d

ma C K
N

= ∆                 (1) 

suggesting C and m would be material "constants", since they did not appear to 
depend much on the load ratio R or on other factors. 
The progress in subsequent years has seen a proliferation of "generalized laws", 
mainly to model the various observed deviations from the power-law regime. For 
example, considering Paris' law to hold in an intermediate region II, it is admitted 
that for low ∆K a region I exists, where there is a decrease in the crack growth 
rate until below a threshold stress-intensity factor, ∆Kth, long cracks do not 
propagate anymore. This threshold significantly depends on the material 
microstructure, environmental aspects, as well as on the loading ratio. Similarly, 
for high ∆K values, a region near critical conditions exists where cracks tend to 
accelerate with respect to region II. More still, when experiments were able to 
investigate "short cracks", it appeared that another, and complicated, deviation 
occurs with respect to Paris' law in its original form where the crack advancement 
is larger. 
Despite these difficulties, the "crack propagation" approach had evolved in a 
philosophy called "damage tolerance" for which it is hoped to estimate crack 
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advancement so as to propose inspection intervals safe enough for cracks not to 
be catastrophic. However, also because of the deviations from the Paris' simple 
regime, no computational model is entirely satisfactory today, even in the opinion 
of Paris himself [2]. Indeed, research is still active on "damage tolerance in HCF" 
(High Cycle Fatigue) where most of the design approach is based on threshold 
and fatigue limits, returning in part to the original SN curves "empirical" 
approach, and not using Paris' type of laws (see for example a recent US Air 
Force initiative in the excellent reviews by Nicholas [3,4]). 
It is clear that the observation of the strong power-law nature of crack propagation 
comes from the underlying self-similarity of crack propagation connected to the 
self-similarity of the crack geometry, when the crack length a is larger than the 
microstructural dimensions, yet smaller than any other dimensions. However, the 
constants of the power law would be true material properties only if the power 
were fixed by dimensional analysis, as elucidated by Barenblatt and Botvina [5] 
(BB in the following, see also [6]). For example, assuming the crack growth 
process stemming from a perfect plasticity mechanism, complete similarity would 
imply m=2 in Eq. (1), which is not observed if not as nearly a limit case. 
Abandoning complete similarity means introducing incomplete similarity, for 
which Paris' law parameter m depends a priori on all other possible dimensionless 
number of the problem. BB considered for example the size of the specimen as 
additional length scale, introducing the dimensionless number IC/yZ h Kσ= , 
where yσ  is the tensile strength, ICK  is the fracture toughness and h is the 
specimen thickness. They "provisionally" suggested that m should be constant for 
Z less than about unity and then linearly increase with Z. A mechanistic 
interpretation suggests that large specimens imply more "static" modes of failure, 
as it is well-known that constraint at the crack tip is higher for large enough width 
and thickness of the specimen (see also the prescription in ASTM E399-90, 
(2002) for toughness measurement, as further remarked by Ritchie [7]). Ritchie 
[7] also made interesting further comparisons of data points using this approach. 
However, Ritchie's plot seems to suggest the slope in the linear increase with Z to 
be very different for different materials, and this suggested us a generalization of 
the BB's approach to look for more general dependencies on dimensionless 
quantities. In the mean time, we also add to the original data points of the BB's 
and Ritchie's papers, other fatigue data for concrete obtained by Bazant and 
coworkers [8,9] and recently reexamined by Spagnoli [10], and we also analyze 
the dependence of the other constant C, rather than just m. 
 
2 BB’s generalized 
 
Extending BB's analysis to cyclic material properties, such as threshold stress- 
intensity factor range, thK∆ , the fatigue limit, flσ∆ , and adding the Young's 
modulus, E, we have: 
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where iΠ  ( 1, ,6)i = K  are dimensionless numbers. Note that 5Π  corresponds to 
the square of the dimensionless number Z introduced by Barenblatt and Botvina 
[5] and to the inverse of the square of the brittleness number s introduced by 
Carpinteri [11,12]. The parameter 6Π  is responsible for the dependence of the 
fatigue phenomenon on the initial crack length, as recently pointed out by 
Spagnoli [10]. In fact, if we introduce the El Haddad length scale [13]: 
 

2

th
0

1

fl

Ka
π σ
 ∆

=   ∆ 
               (3) 

 
The power-law dependence on ∆K, in Paris' law corresponds in BB's terminology 
to incomplete similarity, or self-similarity of the second kind in the parameter 
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However, additional incomplete similarity may hold for the parameters 5Π , 6Π  
and 7Π , generally the transition occurring at 1iΠ ≅ : 
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where, again, the exponents iβ  may depend on iΠ .  
 
3 Analysis of the functional dependences of the Paris' law parameters 
 
The main point raised by BB was that, because of incomplete similarity, Paris' 
law parameter m may depend on 5Π , which corresponds to the square of the 
brittleness number Z. Analyzing Aluminium alloys, 4340 steel and low-carbon 
steels, BB [5] supposed that the relationship between m and Z has three regimes: 

constantm ≅  for small Z, m linear with Z for 1 < Z < 2 and again constantm ≅  
for large Z. These data, along with the data for ASTM steels and for normal and 
high strength concretes (the data refer to a loading ratio R=0) are reconsidered 
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here to examine the role played by the dimensionless parameter 4 / y yE σ εΠ = = , 
since we find that the slope of the linear relationship between m and Z 
progressively decreases from Aluminium alloys to steels. For low-carbon steels, 
m becomes nearly independent of Z and the slope becomes negative-valued for 
normal and high strength concretes (see Fig. 1). 

 
Figure 1. Z-dependence of the Paris’ law parameter m. (a) Aluminium alloys 
[14,15]. (b) 4340 steel [16]. (c) ASTM steels [17]. (d) Low-carbon steel [18]. (e) 
High strength concrete (data from [9] reinterpreted by Spagnoli [10]). (f) Normal 
strength concrete (data from [8] reinterpreted by Spagnoli [10]). 
 
The Z-dependence of the Paris' law parameter C can also be examined. This 
functional dependence has received a minor attention in the past as compared to 
that for m, although the variability of the parameter C is extremely important from 
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the engineering point of view and its size-scale dependence may have strong 
consequences for the damage tolerance design of large scale structures. 
Dimensional analysis suggests two different scaling laws for C, depending on 
whether or not incomplete self-similarity in 5Π  takes place. For complete 
similarity, we have 2 0β =  in Eq. (5) and the functional dependence of C on Z is 
no longer a power-law. On the other hand, if we have incomplete self-similarity in 

5Π , then 2 0β ≠  and a power-law dependence of C on Z can be obtained, i.e., 

2log 2 logC Zβ∝ . 
To assess which of such conditions takes place, we can simply plot the available 
experimental data in the log C vs. Z and log C vs. log Z diagrams. The former plot 
would correspond to 10ZC ∝ , and therefore no power-law dependence between 
C and Z, whereas the latter gives the scaling 2C Z β∝  characteristic of incomplete 
self-similarity. A best fitting linear equation can be determined in both situations 
and the corresponding linear regression coefficient r2 will provide their goodness 
of fit. The situation having r2 closer to unity gives the best correlation. This 
procedure is performed in Fig. 2 for 4340 steel and ASTM steels. In this case, as 
can be seen, the log C vs. Z relationships present correlation coefficients higher 
than those for the log C vs. log Z representation. Therefore, this seems to exclude 
an incomplete self-similarity in 5Π  in metals.  

 
Figure 2. Assessment of incomplete self-similarity in 5Π  in metals (C evaluated 
using ∆K in MPa√m and da/dN in m/cycle). (a) and (b) 4340steel [16]. (c) and (d) 
ASTM steels [17]. 
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On the other hand, this cannot be considered as a universal result. In fact, for 
concrete, the situation is the opposite and the assumption of incomplete self-
similarity in 5Π  gives the best correlation (see Fig. 3). 
 

 
 
Figure 3. Assessment of incomplete self-similarity in 5Π  in concrete (C evaluated 
using ∆K in MPa√m and da/dN in m/cycle). (a) and (b) High strength concrete 
(data from [9] reinterpreted by Spagnoli [10]. (c) and (d) Normal strength 
concrete (data from [8] reinterpreted by Spagnoli [10]). 
 
4 Correlations between the Paris' law parameters 
 
It is useful at this point to step back and analyze the existing correlations between 
C and m. In fact, in view of the previous findings about the m(Z) and C(Z) 
relationships, it would be useful to see if eliminating Z between the two relations, 
the resulting correlation is more or less of the form obtained by previous Authors, 
who evidently were not looking specifically at size-scale effects. In fact, empirical 
correlations between C and m are usually obtained by considering a large series of 
samples with slightly different mechanical properties but with almost the same 
specimen size (see e.g. [19,20], among others). 
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As far as the previous findings about the m(Z) and C(Z) relationships are 
concerned, we have found the following functional dependencies in metals, where 
incomplete self-similarity in 5Π  does not apply: 
 

1 2

3 4

,
log ,
m k k Z

C k k Z
= +

= +
                          (6) 

 
where ik  are best-fitting parameters. Determining Z from the first equation and 
introducing it in the second one, we find: 
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                                   (7) 

 
which suggests a relationship between C and m very similar to that provided by 
the correlations in [19,20]. In fact, since the ratio 4 2k k  is negative valued 
according to experimental data (see Figs. 1 and 2), log C is a decreasing function 
of m. 
On the other hand, when the condition of incomplete self-similarity in 5Π  
applies, like in concrete, then we have: 
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Determining Z from the first equation and introducing it in the second one, we 
find, after some manipulation: 
 

1 6
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In this case, we note that the ratio 6 1k k  is negative valued according to 
experimental data (see Figs. 1 and 3) and therefore log C should be an increasing 
function of m. 
The experimental data regarding log C for 4340 steel, ASTM steels, high strength 
and low strength concretes previously analyzed are herein reported in Fig. 4 in 
terms of m. A best-fitting linear curve is shown with solid line in the same 
diagrams and the corresponding equations are written. Moreover, the correlations 
by Carpinteri and Paggi [19] and by Tanaka [20] are superimposed to the same 
diagrams whenever possible with dashed-dotted or dashed lines, respectively. 
As argued before, the case of concrete appears quite singular in this respect, since 
incomplete self-similarity in 5Π  changes the slope of the log C vs. m relationship 
from negative to positive valued. In this case, the correlation by Carpinteri and 
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Paggi [19] would predict log C almost independent of m and is not able to capture 
the actual experimental trend. 
 

 
Figure 4. Correlations between C and m (C evaluated using ∆K in MPa√m and 
da/dN in m/cycle). Dashed lines refer to the correlation by Carpinteri and Paggi 
[19], whereas dashed-dotted lines refer to the correlation by Tanaka [20] for 
steels. (a) 4340 steel. (b) ASTM steels. (c) High strength concrete. (d) Normal 
strength concrete. 
 
5 Conclusions 
 
If engineers have partly learned how to use deviations of Paris' regime, or to 
"adjust" C and m, for example by crack closure and effect of constraint, power-
laws seem a guide, and no more than this. We should not expect them to be 
"laws", in the stricter and more specific sense of physical laws. Dimensional 
analysis and the concepts of complete and incomplete similarity help in 
elucidating various effects and various dependences on dimensionless parameters, 
but it is clear that this doesn't solve the problem of finding reliable estimates of 
crack growth. 
Barenblatt and Botvina [5] concluded their paper with the hope that similar 
dimensional analysis arguments should be applied to the other power laws in 
fatigue, namely Basquin and Coffin-Manson, also to provide a unified framework, 
including also Hall-Petch relationships. While some of this work has been already 
done (see [21]), it appears that much more study is needed along these lines. So, 
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while crack propagation criteria have for some time been perceived as less 
"empirical" than previous laws of fatigue (like those by Basquin and Coffin-
Manson), it may appear that the contrary may well be true, since Basquin and 
Coffin-Manson's exponents tend to be less dependent on size effects. It should be 
in principle easy to check if this is indeed the case, since size effects on either 
fatigue limit or static strength are relatively well-known. Hence, it appears that the 
lesson of Barenblatt and Botvina should be reconsidered, and further extended. 
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