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Abstract

Large slewing bearings are designed to sustain axial, radial and tilting moments.
Due to their design and manufacturing process, a nonstandard approach has to be
used to calculate the fatigue life. First, a maximum contact force is obtained from
the  load  distribution  in  a  bearing  by  means  of  analytical  expressions  of  the
Hertzian  contact  theory.  Then,  a  strain-life  approach  is  used  to  calculate  the
fatigue life on the basis of  the subsurface stresses as obtained from the finite
element  analysis.  Experimentally  determined  depth-dependent  elasto-plastic
material  properties,  which  appear  as  a  result  of  hardening,  are  taken  into
consideration. The fatigue life largely depends on external bearing loads. For an
external  loading,  which  results  in  3200 MPa  contact pressure  on  a  bearing
raceway, the fatigue life is approximately 4.69e7 load cycles (1.54e6 revolutions).
The calculated fatigue life is in accordance with the requirements of the fatigue
life of wind turbines’ blade flange bearings.
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1. Introduction

Slewing bearings  are  machine elements which  enable  relative  rotation of  two
structural parts, as shown in Fig. 1. They can accommodate axial (Fa), radial (Fr)
and tilting moment loads (M) acting either singly or in combination and in any
direction as shown in  Fig. 1. The bearings are made of inner and outer rings,
rolling elements and spacers, which prevent rolling elements from hitting against
each other. The rings are typically available in one of three executions: a) without



gears, b) with an internal gear and c) with an external gear. Slewing bearings can
perform both oscillating (slewing) and rotating movements. The rotational speed
usually  ranges  from  0.1  to  5  rpm.  They  are  widely  used  in  construction  of
transport  devices  (cranes,  transporters,  turning  tables,  etc.),  wind  turbines
production and other fields of mechanical engineering.

The calculation of  load capacity of  “standard”  bearings  is  widely known and
standardized [1]. It is based on the Hertzian theory of contact, statistical approach
and  a  vast  number  of  tests,  which  are  used  to  determine  different  “Life
Adjustment  Factors”  [1,2,3].  Since  the  manufacturing  process  and  operating
conditions of large bearings significantly differ from those for standard bearings,
the  load  capacity  of  such  bearings  usually  can  not  be  determined  using  the
standardized  procedure.  Hence,  a  rather  simple,  and a  well  known  strain-life
approach for the calculation of fatigue life is presented in the paper. Furthermore,
special attention is being paid to the material properties of the bearing raceway.
The calculation procedure in this paper  is carried out for a four contact-point
single row rolling bearing.

2. Fatigue analysis

2.1. Loads

The bearing is typically loaded with the axial force Fa, radial force Fr,  and tilting
moment  M,  as  shown  in  Fig. 1.  These  loads  are  carried  over  to  the  bearing
raceways by rolling elements, which usually results in the non-uniform contact
loading of  the raceways.  However,  since the rotating speeds  of  large slewing
bearings  are  usually  rather  small,  the  rolling  and  friction  is  not  taken  into
consideration.  Therefore,  the only loads acting on the raceway are the contact
forces Qi, where i stands for the i-th rolling element, as shown in Fig. 2a. For the
purpose of the fatigue analysis, only the maximum contact force  Qmax, obtained
from the  contact  load  distribution  as  described  in  [4],  is  taken into  account.
Moreover, due to the nature of the problem, the contact force is assumed to be
pulsating, as shown in Fig. 2. Hence, the mean and amplitude contact forces, Qm

and Qa, respectively, are calculated as:
Qm=Qa=Qmax/2 . (1)



2.2. Material properties

The presented approach assumes that the raceways and rolling elements can be
modeled  with  elasto-plastic  and  elastic  material  properties,  respectively.
According to the in-house research and experimental work the rolling elements, if
loaded with the usual contact forces, do not undergo plastic deformations. On the
contrary,  the bearing rings are made of somehow “weaker” material. Since the
manufacturing procedure includes surface hardening, the raceways usually have
rather hard case and ductile core. This means that at higher contact loads plastic
deformations below the surface can appear. Hence, the material characteristics of
the raceway change with the depth.

By taking into observation the above mentioned, the bearing raceway is divided
into layers with different elasto-plastic material properties. The layers are defined
on the basis of the measured depth-dependent hardness profile, which means that
each layer has different hardness. Furthermore, each layer is modeled with the
cyclic stress-strain curve characterized by a Ramberg-Osgood equation [5]:
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where εa, ∆εe/2, ∆εp/2, σa, E, K' and n' are true strain amplitude, true elastic strain
amplitude, true plastic strain amplitude, true stress amplitude, Young's modulus of
elasticity,  cyclic  strength  coefficient  and  cyclic  strain  hardening  exponent,
respectively. K' and n' are calculated as [5]:
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where σf' and εf' are fatigue strength coefficient and fatigue ductility coefficient,
respectively. The parameters  E,  b,  c,  σf' and  εf' are obtained on the basis of the
available experimental data, i.e. by averaging or by linear regression of the values
available from the literature [6,7]. Similar approach has already been presented
and elaborated in [8,9]. However, since mostly tensile properties are available in
the  literature,  an  assumption  is  made,  that  the material  properties  for  the
compression and tension are the same.

2.3. Subsurface stresses

Subsurface stresses are calculated on the basis of the maximum and minimum
contact  forces,  Qmax and  Qmin, respectively  (see  Fig. 2b).  For  each  of  them
coordinate stresses and strains, i.e. σij and εij, where i,j ∈ {x,y,z}, are obtained. It is
important to take into account loading history.  Stresses and strains have to be
determined first at Qmax and only afterwards at Qmin. This ensures that the plastic
deformations, which could appear at Qmax, are also taken into account.

Next, equivalent mean stress σm,q and maximum alternating shear stress γa,max are
calculated according to the following equations [5]:



m ,q=m,1m,2m,3  and a ,max=a,1−a,3 , (4)

where σm,1, σm,2 and σm,1 are mean principal stresses (σm,1 > σm,2 > σm,1), and εa,1 and
ε,a2 are  alternating  principal  strains  (εa,1 > εa,2).  They  are  calculated  as  (see
Fig. 2b):
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where  i ∈ {1,2,3},  and  j ∈ {1,2}.  The indexes  i and  j designate  the principal
values.

2.4. Number of cycles to failure

It is commonly assumed that the subsurface failures in bearings occur because of
the shear stresses [3]. Therefore, the number of cycles to failure Nf is calculated
according to the Tresca's hypothesis of maximum shear deformation [3,10]:
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where νe and νe are elastic and plastic Poisson's ratios, respectively. Eq. (6) can be
solved  numerically  by  using  some  some  iterative  method.  Moreover,  an
approximate number of  bearing revolutions to failure on inner  ring  Nr can be
calculated as [3]:
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2N f
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where  nb,  db,  α0 and  d0 are  number of  rolling elements  (balls),  ball  diameter,
nominal contact angle of the bearing and ball track diameter, respectively.

3. Practical example

3.1. Geometry, loads and material properties

The calculation approach described above is demonstrated on the four contact-
point  single  row  ball  bearing  shown  in  Fig. 3a.  The  bearing  has  ball  track



diameter  d0 = 766 mm,  ball  and  raceway  curvature  radii  rb = 17.5 mm  and
rc = 18.04 mm, respectively, nominal contact angle a0 = 45° and radial and axial
clearances cr = 0.05 mm and ca = 0.05 mm, respectively.

Maximum contact  load is  calculated from the external  loads  Fa = 260 kN and
M = 290 kNm as  described  in  [4]  (see  also  Fig. 1).  This  results  in  a  contact
pressure  p = 3200 MPa  and  a  contact  force  Qmax = 50243 N,  which  represents
maximum pulsating load as shown in Fig. 2b.

The  bearing  rings  are  made  of  steel  42CrMo4  (AISI  4142).  The  material
properties for each hardness in question (layer) are obtained on the basis of the
data given in [6,7] and are shown in  Table 1. They are determined whether by
averaging values (E,  b,  c) or  by using linear regression (Rm,  εf ,  σf',  εf'). These
values are then used to design cyclic stress-strain curves according to the Eq. (2).
Depth-dependent hardness profile of a raceway and cyclic stress-strain curves for
each  layer  are  shown  in  Fig. 4a and  Fig. 4b,  respectively.  Elastic  in  plastic
Poisson's ratios for all layers are and νe = 0.3 and νp = 0.3, respectively.

Table 1: Material properties used for the FEM analysis

# HB
E

[GPa]
Rm

[MPa]
εf 

σf'
[MPa]

b εf'
c

core 280 1290 0.930 1555 0.712

transition 445 205 1755 0.542 2040 −0.081 0.389 −0.716

case 615 2240 0.142 2540 0.057

3.2. Finite element analysis setup

For the purpose of the finite element analysis the geometry of the raceway is
somehow simplified according to the Hertzian contact  theory [3]  as shown in



Fig. 3b.  Hence,  the  finite  element  model  is  able  to  take  into  account  double
symmetry  boundary  conditions.  The  raceway  is  divided  into  3  layers  with
different elasto-plastic cyclic material properties. The bottom surface of the model
is fixed. The contact force is applied in the reference point in the center of the ball
and all the nodes on that surface are coupled to the reference point. The loading
cycle  consists  of  two steps.  First,  the contact  force  is  increased to  Qmax,  and
second, the contact force is released. The stress and strain amplitudes are then
calculated by subtracting appropriate values. The model is discretized using 8-
node linear elements and the calculation is done using ABAQUS software.

4. Results and discussion

Results of the calculation are shown in Fig. 5. The figure shows equivalent mean
stress σm,q (Fig. 5a), maximal shear strain amplitude γa,max (Fig. 5b) and number of
cycles to failure  Nf (Fig. 5c)  in relation to the depth  z (see  Fig. 3b). The figure
also shows layers (case, transitional and core) and the depth at which the failure is
suppose to occur.



The number  of  cycles  needed for  the  failure  to  occur  is  Nf = 4.96e7 and the
number of bearing revolutions is  Nr = 1.54e6. The depth at which the failure is
supposed to occur is z = 0.85 mm. Fig. 5 shows that the failure occurs in the first,
thus the hardest layer. Sudden changes of Nf at the layers' interfaces (see Fig. 5c)
are a result  of  the stepwise changing of material  parameters (see  Table 1 and
Fig. 4).

The computations have also shown that at this contact load (Q = 50243 N) there is
practically no plastic deformation of the raceway. Namely, the plastic deformation
is less than 0.004%, which is negligible. Furthermore, Von Mises residual stress –
i.e.  stress  at  Qmin (after  releasing  Qmax)  –  is  around  35 MPa,  which  is  also
practically negligible.

5. Conclusion

A computational procedure for calculation of fatigue life of large rolling bearings
is presented. The calculation is based on the strain-life approach, and it takes into
consideration  depth-dependent  elasto-plastic  material  properties  of  the bearing
raceway. A practical example is presented for demonstration.

The presented approach seams to be fairly simple and yet provides a good basis
for  further  development.  In  the  future  more  attention  should  be  paid  to  the
modeling of the depth dependent material characteristics. Currently the changes
are stepwise and rather coarse. This results in non-expected changes of number of
cycles to failure in regard to the depth. The calculation of fatigue life would also
be improved by taking into consideration kinematic hardening material properties.
Furthermore,  currently  cyclic  material  characteristics  for  certain  hardness  are
calculated on the basis of the characteristics available in the literature. Although
these are taken from trusted sources, the calculation would most certainly benefit
from using experimentally determined material properties.
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