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1. Introduction

Fatigue damage is generally separated in two domains : Low Cycle Fatigue
(LCF) and High Cycle Fatigue (HCF) with a transition between limited and un-
limited endurance. Even if fatigue failure is the result of complex microscopic
phenomena which occur under cyclic loading, the common principal mecha-
nism responsible of the crack initiation is the plastic strains and the damage
developed in the grains due to irreversible dislocations motion. The essential
difference between HCF and LCF regimes is that the scale of the plastic lo-
calization in a material volume is mesoscopic and respectively macroscopic. A
general framework was already proposed by Charkaluk and Constantinescu [4],
based on plastic dissipation, which allows to propose a unified vision of fatigue
by considering plastic dissipated energy per cycle as a damage indicator. Re-
sults coming from temperature evolution measurements under cyclic loadings
reinforced this proposition but its principal drawback is its independence on
mean stress effect. In HCF as well as in LCF, this effect is then often postulated
with linear relations between shear stress and respectively dissipated energy and
maximal hydrostatic pressure [7, 1]. The objective of this communication is to
show that the explicit introduction of damage in the modeling enables to take
into account the mean stress effect in fatigue, in HCF as well as in LCF.

In the next section, a new micromechanical approach in HCF recently pro-
posed by Monchiet et al. [12] and based on the introduction of damage at the
grain scale, is presented. Damage is assumed to be the result of microvoids,
representing microcracks nucleation and growth along slip bands. The dam-
age growth is here taken into account with a Rice and Tracey type evolution
law [15]. A local approach of fatigue crack nucleation at the slip band-matrix
interface is then proposed. It corresponds to a critical value of the porosity; the
fatigue criterion adopted is then a condition of no crack-nucleation. In a third
section, elements are proposed for the extension of this approach to a dissipa-
tive framework in HCF. By using the thermodynamics of irreversible processes
and more particularly the heat coupled equation, simulations of the temperature
evolutions in HCF regime under cyclic loadings with different stress ratios are
realized in order to evaluate the role of the mean stress on thermomechanical
couplings. Then, in a fourth section, the extension to LCF is proposed. Here,
cyclic plasticity can be considered macroscopic, i.e. at the specimen or struc-
ture scale. Therefore, the general assumptions of the modeling are recalled and
the plastic dissipation is defined. This expression is compared to Park and Nel-



son [14] approach in low cycle fatigue and to Amiable et al. [1] proposition in
thermomechanical fatigue.

2. Damage modeling in HCF

2.1 Modeling basis

Under low macroscopic loading as in the context of HCF, in the case of FCC
structures, the plastic behavior is generally characterized by the activation of
a predominant slip system and more precisely by the formation of strain lo-
calization band which are the potential sites for microcracks nucleation. This
predominant slip system activated is characterized by a plane, defined by a unit
normal vector n and a slip direction m. Let us introduce σ and ε respectively
the microscopic (i.e. at the grain level) stress and strain fields. As classically,
an additive decomposition of the total strain ε into elastic strain, εe, and plastic
strain, εp, at the microscopic scale is adopted : ε = εe + εp. The microscopic
plastic strain tensor reads : εp = γp∆ where γp is the slip plastic strain and ∆

being the second order symmetric tensor ∆ = n
s
⊗ m = 1

2
(n ⊗ m + m ⊗ n).

We assume that the plastic strain is described, as classically, by Schmid’s law :

f = |τ − x| − τ0 − R(γp
cum) (1)

where x is the kinematic hardening variable and R, the isotropic hardening
variable with γp

cum =
∫ t

0
|γ̇p|dt′.

In the particular case of persistent slip bands (PSB), the strain localization is
also accompanied by a dislocation annihilation mechanism which leads to the
formation of vacancies along such bands which has been modeled by Essmann
et al. [8] by defining a porosity associated to this mechanism, ηa, given by :

ηa(γ
p
cum) = A0 {kaγ

p
cum − 1 + exp (−kaγ

p
cum)} (2)

As the transition from vacancy production to the formation of microcracks is
not yet well understood, it is assumed that it is the result of the agglomeration
and the growth of vacancies formed by the previous process. Damage along
slip bands is then the result of both two mechanisms: vacancies production
and voids growth which is the result of the combined effect of the slip-like
plastic activity and pressure. The total porosity at the grain scale, η, is then
decomposed into two terms corresponding respectively to nucleation and the
growth part as follows: η = ηa + ηg. However, in many cases, PSBs are not
observed at the microstructure scale. Particularly, in a lot of engineering cases,
it is well known that initial defects, as inclusions, precipitates, are the origin of
the fatigue crack initiation. The proposed model is however still acceptable, but
the definition of ηa has to be adapted, for example by taking into account an
initial porosity due to the process.

As voids nucleations and growth induces volume change, the plastic strain at
the grain scale can be decomposed in the following form, 1 being the second
order identity tensor :

εp = γp∆ + εp
h 1 (3)



where the volumetric plastic strain εp
h due to voids growth is related to ηg by

using mass balance equation: ηg = 1 − exp(−3εp
h). A local fatigue criterion

corresponding to no crack initiation is then defined by considering a critical
value of the porosity, ηc, ideally corresponding to a critical crack size at the slip
bands/matrix interface:

ηa + ηg < ηc (4)

It appears that the determination of the total porosity η requires the calculation
of εp

h.

2.2 Damage growth

Void growth in single crystal is the result of the activation of multiple slip ac-
tivity around the circumference of the void. In order to derive a void growth
model, single crystal is replaced by an equivalent von Mises material. A first
step of the modeling consists in the consideration of a single void growth in
an infinite perfectly plastic medium using the well known Rice and Tracey ap-
proach [15]. Plastic activity is assumed to be decomposed into an homogeneous
plastic strain (the predominant slip system activated) and a heterogeneous sym-
metric plastic strain which accounts for multiple slip activity around the cir-
cumference of the void. The volumetric plastic strain εp

h, is the result of the
combined action of pressure and the predominant slip plastic strain activity and
is given by the following equation (see [12] for more details) :

ε̇p
h = η

1

2
√

3
sinh

{√
3

2

σh

τ0

}
γ̇p

cum (5)

where σh is the hydrostatic part of the microscopic stress tensor and γp is de-
scribed here by Schmid’law (1).

2.3 Determination of the macroscopic fatigue criterion

In the HCF framework of Dang Van [7], a plastic inclusion is supposed embed-
ded in an elastic matrix and to describe the relation between macroscopic and
mesoscopic fields, the Lin-Taylor scheme is used [7]. It supposes the equality
between the macroscopic strain tensor E and ε, the mesoscopic one. In the
same context of very localized plasticity, the more generalized self-consistent
scheme of Kröner can be used and includes the Lin-Taylor model [12]. By con-
sidering the same isotropic elastic behavior at both scales, the Kröner scheme
gives the following relation between the mesoscopic and macroscopic stress
fields :

σ = Σ− C : (I − P : C) : εp (6)

where C and P are respectively the fourth rank elastic moduli and Hill tensors
and I is the fourth order identity tensor. Following Dang Van’s reasoning, the
elastic shakedown at the grain scale is a first necessary no crack initiation con-
dition. The criterion (4) is a sufficient condition [12]. The shakedown condition
(the cumulated plastic strain p is bounded) enables simplifications [12] and a



final expression of the macroscopic fatigue criterion, deduced from (4) is the
following:

A0(kap − 1 + exp(−kap)) + 3εp
h < ηc (7)

In the general case, the different variables are computed after numerical inte-
gration. Some cases can however be determined analytically, in particular affine
loadings characterized by: Σ(t) = Σa sin(ωt) + Σm. By considering the Lin-
Taylor scheme and a linear isotropic hardening model, the following expression
of the criterion can be obtained for the particular case of an alternated torsion
loading with a mean pressure:

Ta

τ0

+ α
Σh,m

τ0

< β; with : α =
R0

A0kak
; β =

R0

A0kaτ0

{
ηc + A0

{
1 +

τ0ka

R0

}}
Ta is the macroscopic shear amplitude and βτ0 corresponds in this case to the
fatigue limit under alternated torsion. This expression corresponds exactly to
the criterion proposed by Dang Van [7], establishing a linear relation between
shear stress and hydrostatic pressure. The criterion proposed by Monchiet et
al. [12] is therefore a micromechanical based generalization, which exhibits
explicitly the role of the mean and alternated part of the hydrostatic stress, as
shown also in [13]. An illustration of this approach in an other example of
macroscopic affine loading is presented on figure 1 where a repeated torsion
with a mean tension is considered [16]. The results clearly shows the good
capability of the model to recover explicitly the effect of the mean stress. In
the next section, the extension of this approach to a dissipative framework is
detailed.
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Figure 1: Repeated torsion with mean tension on En25T steel: comparison
of the present criterion with the experimental data (o) of Ros [16]. The two
experimental points used for the global identification of the model’s parameters
are in black.

3. Plastic dissipation in HCF

3.1 The plastic dissipation in the plasticity-damage framework

In the previous section 2.3, the considered volume of material is elastic and the
plasticity is localized is some grains, represented as a plastic inclusion in an



elastic matrix. This assumption was justified as the effect of very small macro-
scopic plastic strains is negligible in the interaction law (6) for the estimation
of the macroscopic stresses. However, it is no more the case for the estimation
of the macroscopic dissipation. Therefore, a macroscopically plastic volume of
matrix-inclusion type is considered in this section; fv is the volume fraction of
inclusion. Let Ep be the macroscopic plastic strain tensor. For sake of sim-
plicity, a ”mean” grain is assumed for the plastic inclusion and the equation (3)
becomes: εp = εp

d + εp
h I , where εp

d is the deviatoric plastic strain associated to
the plastic slip activity. Then, the interaction law (6) becomes:

σ = Σ− C : (I − P : C) : (εp
d + εp

h I − Ep) (8)

In the particular case of an idealized spherical inclusion, P reads:

P =
a

3K
J +

b

2µ
K with: a =

3K

3K + 4µ
and b =

6

5

K + 2µ

3K + 4µ

where J = 1
3
I⊗I and K = I−J. K is the bulk modulus, K = 3λ+2µ and λ, µ

are the Lamé’s parameters. As a first approximation, one can also consider that
Ep = 〈εp〉 = fvε

p; the interaction law (8) conducts to the following relation
between σ and Σ:

σ = Σ− (1 − fv)(2µ
∗εp

d + 3K∗εp
h I)

where K∗ = K(1 − a) and µ∗ = µ(1 − b). One can also remark that tr(σ̇) =
tr(Σ̇)−9K∗(1−fv)ε̇

p
h. Moreover, the mesoscopic plastic dissipation is defined

as:
σ : ε̇p = σ : ε̇p

d + 3σhε̇
p
h (9)

and the macroscopic one is deduced from the previous relations:

Σ : Ėp = fv (σ : ε̇p
d + 3σhε̇

p
h + 2µ∗εp

d : ε̇p
d + 9K∗εp

hε̇
p
h) (10)

3.2 Temperature evolutions and mean stress effect

The thermodynamics of irreversible processes (TIP) enables the determination
of the heat coupled equation connecting the thermal field and the mechanical
fields (see for example [10]). By defining a free energy Ψ depending on state
variables αj , (j = 1, 2, . . . , n), this heat equation can be written as:

ρCvṪ = r + div(k · ~grad(T )) +

(
Σ : Ė + ρT

∂2Ψ

∂T∂αj

α̇j − ρ
∂Ψ

∂αj

α̇j

)
(11)

where ρ is the density, Cv the specific heat, T the absolute temperature, r the
distribution of external heat sources, k the second rank tensor of thermal con-

ductivity. The intrinsic dissipation is Φ = Σ : Ė − ρ
∂Ψ

∂αj

α̇j . One consider

here that the inclusion admits an elastoplastic behavior and, for sake of simplic-
ity, a linear kinematic hardening. As the plasticity is supposed confined in a
few grains, the volume fraction of plastic inclusion, fv, is considered low. The



matrix is considered perfectly plastic and its volume fraction is (1 − fv). The
state variables are then Ee, εe and εp and their thermodynamical associated
forces, Σ and σ the macro- and mesoscopic stress tensors and x the stress ten-
sor associated to the kinematic hardening. Consequently, the Helmholtz’s free
energy is split into two parts: Ψmat associated to the matrix and Ψin associated
to the inclusion. Therefore, following [5], the heat balance equation can then
be simplified as:

ρCvṪ−div(k · ~grad(T )) = r−α T tr(Σ̇)−9Kα2T Ṫ +9 K∗(1−fv) α T ε̇p
h+Φ
(12)

where α is the thermal expansion coefficient. The first term on the right side
corresponds to an external source. The sum of the second and third terms is
the thermoelastic coupling and the following term is a coupling between heat
and damage. The last term is the intrinsic dissipation, Φ. With the previous
assumptions, Φ is now equal to:

Φ = Σ : Ėp + fv

[
Σ : Ėe − σ : ε̇e − 2

3
hεp : ε̇p

]
where h is the mesoscopic hardening modulus. The previous relations between
mesoscopic and macroscopic mechanical fields conduct finally to:

Φ = fv

[
σ : ε̇p − 2

3
cεp : ε̇p

]
+ fv (2µ∗(2 − b)εp

d : ε̇p
d + 3K∗(2 − a)εp

h : ε̇p
h)

+fv [(1 − b) (σ : ε̇p
d + σ̇ : εp

d) + (1 − a) (3σh : ε̇p
h + σ̇h : εp

h)]

In this expression the f 2
v and f 3

v terms have been neglected. By taking into
account this expression of the intrinsic dissipation, the equation (12) can be
solved. The principle is detailed in [5] in the particular case of purely reversed
tension-compression tests (Rσ = −1), without external heat sources (r = 0).
These simulations are inspired by the experimental work of Boulanger [2] who
realized cyclic tests with temperature measurements on a dual-phase steel at a
50 Hz frequency with different stress amplitude of 180, 250 and 300 MPa and
different stress ratios. The specimens are flat and the conduction phenomenon is
considered isotropic (k = kI). The estimation of the heat exchanges is similar

as Boulanger [2] ones: −div(kgradT ) ' ρC
T

τeq

. The constant τeq is represen-

tative of the exchanges with the environment: convection with the ambient air
and with the grip system. The heat coupled equation (12) can then be simplified
and numerically solved with an explicit scheme in time for the temperature es-
timation. The plastic strain increments are computed beforehand with a radial
return type implicit scheme. Details can be found in [5].

Here, tests at different stress ratios are simulated, in order to estimate the influ-
ence of the damage modeling on the temperature evolutions. The figure 2 shows
the evolution of the mean temperature during cycling. One can observe that the
stress ratio has an influence on this evolution, due to the spherical term in the
relation (10). This influence is quantified for different stress ranges and differ-
ent stress ratios on figure 3 and is qualitatively comparable to the experimental



influence observed by Boulanger [2]. This shows that the proposed plasticity-
damage framework enables a good representation of the mean stress effect in
HCF. In the next section, this framework is now extended to LCF context, where
plasticity is generalized at the scale of the material volume.
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Figure 2: Evolution of the mean temperature during the cyclic loading for two
cyclic tests at different stress ratios. The stress amplitude is 180MPa.
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Figure 3: Evolution of the mean stabilized temperature as a function of the
loading amplitude and the stress ratio.

4. Plastic dissipation in LCF

4.1 Extension of the damage model to generalized plasticity

In the LCF case, a generalized plasticity is considered at the scale of the material
volume. Then, Σ, E and Ep denote respectively the macroscopic stress, strain
and plastic strain tensors. An additive decomposition of the total strain E into
elastic strain, Ee, and plastic strain, Ep is also adopted: E = Ee + Ep. In
LCF, it is well known that micro-cracks can quickly initiate in a specimen and
the lifetime corresponds then to a slow crack growth until a macroscopic size.
Therefore, similarly as for the previous proposed HCF model, lets denote by ηa

the porosity associated to the initial small cracks initiation and ηg the porosity
corresponding to the crack growth. The total porosity in the specimen is: η =
ηa + ηg. Then the relation (3) becomes:

Ep = Ep
d + Ep

h 1 (13)



Ep
d corresponds to the macroscopic deviatoric plastic strain tensor and is de-

duced from the plastic criterion and from the normality law. The volumetric
plastic strain Ep

h is due to crack growth and is related to ηg by using mass bal-
ance equation :

ηg = 1 − exp(−3Ep
h) (14)

The evolution of the hydrostatic plastic strain Ep
h is then required and can be

similarly inspired by Rice and Tracey’s work [15] dedicated to the growth rate
of a spherical void embedded in an infinite perfect plastic matrix. A classical
approximation of this evolution law available for high triaxiality ratios is the
following:

ȧ

a
= 0.283 exp

{
3

2

Σh

Σ0

}
ṗ (15)

where a is the void’s radius, Σh =
1

3
tr(Σ), Σ0 is the macroscopic yield stress

and ṗ =
[

2
3
Ėp

d : Ėp
d

]1/2

. In order to take into account arbitrary triaxiality ratios,
Monchiet [11] obtained the following closer approximation, inspired by the
Gurson’s assumptions [9]:

ȧ

a
=

5

9
sinh

{
3

2

Σh

Σ0

}
ṗ (16)

Then, the mass balance equation imposes that Ėp
h = η

ȧ

a

4.2 Plastic work and mean stress effect

In LCF and in thermomechanical fatigue, crack initiation criterion based on
plastic and/or elastic energy were recently proposed [3, 14, 1]. In the first case,
Charkaluk et al. [3] proposed the dissipated plastic energy per cycle ∆wp

d as a
damage indicator Φ1 in thermomechanical fatigue:

Φ1 = ∆wp
d =

∫
cycle

Σ : Ėp
ddt

This proposition has the particular inconvenient, in a classical deviatoric plastic
framework, to be independent of mean stress effects as ∆wp

d do not depend on
hydrostatic pressure. Park et al [14] propose then to combine in Φ2 the plastic
dissipated energy ∆wp

d with the deviatoric elastic energy ∆we
d and triaxiality

factors TFs and TFm as follow:

Φ2 = 2k1TFs∆wp
d + 2k2TFm∆we

d

with TFs =
Σh,a

J2

, TFm =
Σh,m

J2

and k1, k2 are material parameters. The terms

Σh,a and Σh,m are respectively the amplitude and the mean value of the hydro-
static pressure and J2 is the second invariant of the deviatoric part of the stress



tensor. To take into account mean stress effect, Amiable et al. [1] proposed
recently a more simple indicator Φ3 inspired by the linear relation proposed in
HCF by Dang Van [7] between the shear stress amplitude and the maximal part
of the hydrostatic pressure. Then, Φ3 takes the following form:

Φ3 = ∆wp
d + αΣh,max

Even if Φ2 and Φ3 exhibits a dependence on hydrostatic pressure, the forms of
these damage indicators are however postulated. Therefore, it is interesting to
define the macroscopic plastic dissipation dp associated to the proposed damage
based framework. Then, the plastic dissipation is precisely defined by dp = Σ :
Ėp, and, taking into account the equations (13) and (16), this conducts to:

dp = Σ : Ėp
d + 3Σh : Ėp

h with Ėp
h = η

5

9
sinh

{
3

2

Σh

Σ0

}
ṗ

It can then be underlined that the expression of dp depends on the classical devi-
atoric plastic dissipation Σ : Ėp

d which is present in the three previous damage
indicators [3, 14, 1] but depends also explicitly on the hydrostatic pressure Σh.
The next step of this work will then consist in a comparison of this theoreti-
cal expression of the plastic dissipation with experimental results coming from
literature [14].

5. Conclusion

In this communication, the particular role of the mean stress in fatigue has been
studied in HCF and LCF with the explicit introduction of damage in the model-
ing, inspired by the recent work of Monchiet [12]. In HCF, damage mechanisms
are introduced in a multiscale approach in order to represent the initiation and
growth of micro-cracks along the slip bands. The expression of the fatigue cri-
terion, corresponding to a critical porosity, depends explicitly on the hydrostatic
pressure. In the particular case of cyclic affine loadings and under particular as-
sumptions, the Dang Van’s criterion is recovered. This model is introduced in a
thermodynamical framework which conducts to the heat coupled equation. It is
shown that this model enables also a good representation of the mean stress in-
fluence on temperature evolutions of a specimen under cyclic loading with dif-
ferent stress ratio. An extension of this approach to LCF is proposed, based here
on the macroscopic plastic dissipation. The introduction of damage enables to
exhibit explicitly the role of hydrostatic pressure. Some work are in progress in
order to compare the theoretical dissipative framework to experimental results.
A coupling between damage and plasticity, inspired by the Gurson’s work [9],
is also possible [13]. This general framework seems to be a good candidate to
propose a more unified vision of the fatigue phenomenon [6, 4].
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