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Abstract 
A crack in the tooth root, which is the least desirable damage caused to gear units, 
often leads to failure of gear unit operation. A possible damage can be identified 
by monitoring vibrations. Time signals were obtained by experiments. 
Amplitudes of time signal vibration are, by frequency analysis, presented above 
all as a function of frequencies in spectrum using hybrid procedure for 
determining the level of non-stationarity of operating conditions primarily of 
rotational frequency. A non-stationary signal was analysed as well, using the 
family of Time Frequency Analysis tools, including Wavelets and Joint Time 
Frequency Analyses. Wavelet analysis is suitable primarily for non-stationary 
phenomena with local changes. The purpose was to obtain the location of the 
crack, i.e. to identify the tooth. Typical spectrogram and scalogram patterns result 
from reactions to faults or damages; they indicate the presence of faults or 
damages in a very reliable way. 
 
 
1. Introduction 
 
The aim of maintenance is to keep a technical system (gear-unit) in the most 
suitable working condition; its purpose is to discover, to diagnose, to foresee, to 
prevent and to eliminate damages. The purpose of diagnostics is to define the 
current condition of the system, and the location, shape and reason of the damage 
formation. Although a gear unit, with its elements enabling the transmission of 
rotating movement, is a complex dynamic model, its movement is usually 
periodical. Faults and damages represent a disturbing quantity or impulse, which 
is indicated by local and time changes in vibration signals [1,2]. As a result it is 
possible to expect time-frequency changes [3]. This idea is based on kinematics 
and operating characteristics. 
Individual frequency components in signals often appear only occasionally. 
Classical frequency analysis of such signals does not suffice to determine when 
certain frequencies appear in the spectrum. Time-frequency analysis, however, 
makes it possible to describe in what way frequency components of non-
stationary signals change with time and to define their intensity levels. Gabor, 
adaptive and wavelet transforms are representatives of various time-frequency 
algorithms [4]. The basic idea of all linear transforms is to carry out a comparison 
with elementary functions determined in advance [5]. It is possible to obtain 
different signal presentations on the basis of various elementary functions [6]. 
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2. Adaptive Method Analysis 
 
Qian [7] significantly improved the adaptive transform of a signal although many 
authors had been developing algorithms that would have no interferences 
reducing the usability of individual transforms as opposed to Cohen’s class. 
Adaptive transform of a signal x(t) is expressed in the following way: 
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where analysis coefficients are determined by means of the following equations  
 
 pp hxB ,=  (2) 
 
whereby similarity between the measured signal x(t) and elementary functions 
hp(t) of transform is expressed. 
A time-dependent adaptive spectrum can be defined as 
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This is an adaptive spectrogram based on representations. No interferences and no 
cross terms are included, which makes it different from the Wigner-Ville 
distribution. Additionally, it also satisfies the conditions relating to energy 
conservation. 
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The selection of elementary functions is the basic issue relating to linear 
presentations. In relation to a Gabor expansion, a set of elementary functions 
comprises a time-shifted and frequency modulated prototype window function 
w(t). In concern to wavelets, elementary functions are acquired by scaling and 
shifting a mother wavelet ψ(t). In these two examples, structures of elementary 
functions are determined in advance. Elementary functions in relation to adaptive 
representation are fairly demanding. In general terms, the adaptive transform is 
independent from the choice of elementary functions as it permits arbitrary 
elementary functions. In principle, elementary functions, used for adaptive 
representation of a signal with Eq. (1), are very general although this is not 
always the case in practice. Regarding time and frequency, elementary functions 
are preferentially localised in order to stress the time dependence of a signal. 
Also, it is necessary that they use the presented algorithm in a relatively simple 
way. A Gauss type signal has very favourable characteristics and is considered a 
basic choice when it comes to the adaptive representation. 
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3. Wavelet Analysis 
 
The continuous wavelet transform of function x(t)∈L2(ℜ) at the time and scale is 
expressed in the following way [8]: 
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where the transform is presented as the product of convolution; in the Eq. (6), the 
expression of an average wavelet function and the corresponding Fourier integral 
transform, Eq. (7), is expressed. 
In concern to the continuous wavelet transform, the observed function x(t) is 
multiplied by a group of shifted and scaled wavelet functions. This brings about 
changes in time and frequency dissemination. With this, time and frequency 
dissemination of the continuous wavelet transform changes. 
Wavelets, as locally limited functions, are used to analyse the observed function 
x(t). The continuous wavelet transform is very sensitive to local non-stationarities. 
Gabor wavelet function is a representative of an approximately analytical wavelet 
function, acquired by means of a frequency modulation of the Gauss window 
function [8]: 
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A family of wavelet functions, or shifted and scaled Gabor wavelet function is 
obtained as follows (8): 
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On the basis of the average moment of function: 

 
 ηωω == Gaborsu,  (10) 

 
which represents the centre of the Fourier integral transform. 
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The relation between scale and frequency is defined as follows: 
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4. Practical Analysis 
 
All the measurements have been carried out in the test plant (Fig. 1) of the 
Computer Aided Design Laboratory of the Faculty of Mechanical Engineering, 
University of Maribor. A one-stage helical gear unit is located at the spot where 
vibration measurements have been performed. 
A helical gear unit with straight teeth was integrated into the gear unit. Tests were 
carried out under constant loads and vibrations; measurements were performed 
directly, with accelometers fixed on the housings. Each gear unit had a carburised 
spur gear pair of module 4 mm, the pinion had 19 and the wheel 34 teeth. A 
nominal pinion torque was 20 Nm and nominal pinion speed was 1200 rpm (20 
Hz). For this type of gear units, this is a very typical load condition frequent in 
industrial applications. 
 

 
Figure 1: Test plant 

 
A gear unit had a fatigue crack in the tooth root of a pinion; the operating 
conditions were typical of this type of a gear unit. A ground gear pair was a 
standard gear pair, with the teeth quality 6, but with the presence of a crack in the 
tooth root of a pinion. It is shown in Fig. 2. The length of the crack on one of the 
teeth in Fig. 2 is 4.8 mm. The whole measurement process and preparations for 
the analysis are presented in [9].  
Elementary functions have restricted features. Therefore, adaptive spectrogram 
has a fine adaptive time-frequency resolution. Time-frequency resolution of the 
transform is adapted to signal characteristics. As an elementary function it is 
possible to use Gauss function (impulse) and linear chirp with Gauss window. If 
linear chirps that compose a signal are the result of a linear change in the 
rotational frequency of a gear unit, an adaptive spectrogram can be used to 
determine in what ways a possible frequency modulation is reflected in the time-
frequency domain.  

Tested gear unit 
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Brake
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Figure 2: Pinion with a crack in the tooth root 
 

The signal of measured values was 1 s long and composed of, on an average, 
12500 measuring points. For comparison, spectrograms concerning Gabor 
transforms are given, the length of the window is 700 points. Spectrogram 
evaluation is based on an average spectrogram, which represents an amplitude 
spectrum of a measured signal, and on pulsating frequencies of individual 
frequency components. 
In relation to the Gabor spectrogram, presented in Fig. 3, no rhythmic pulsation of 
harmonics is evident, with the exception of typical frequencies, determined on the 
basis of a power spectrum. It is possible to observe some pulsation sources but 
they are not very expressed in relation to the adaptive spectrogram (Fig. 4), which 
features a higher level of energy accumulation in the origins. It is very interesting 
to monitor the increase or decrease (complete disappearance) in appropriate 
frequency components with rotational frequency of 20 Hz. This is typical of the 
3rd harmonic of mesh frequency; 1530 Hz is expressed only in relation to the 
presence of a crack. This phenomenon is much more expressed in the adaptive 
spectrogram (Fig. 6) than in the Gabor spectrogram (Fig. 5). In Fig. 6, pulsation 
(i.e. the area, marked with a continuous line) is expressed, whereby a single 
engagement of a gear pair with a crack within one rotation of a shaft is reflected. 
Similarly, sources denoting pulsating portions of individual components with the 
frequency of 20 Hz are indicated between the 6th and the 9th harmonics (i.e. the 
area marked with a dashed line). 
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Figure 3: Gabor’s spectrogram of a faultless gear unit 
 
 

 
 

Figure 4: Adaptive spectrogram of a faultless gear unit 
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Figure 5: Gabor’s spectrogram of a gear unit with a pinion with a crack 
 
 

 
 

Figure 6: Adaptive spectrogram of a gear unit with a pinion with a crack 
 

A scalogram of analytical wavelet transform with Gabor wavelet function 
represents normalised and square values of amplitudes of wavelet coefficients. 
The connection between the scale and frequency is established, and the 
representation is performed in a time-frequency domain. As it is much simpler to 
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find adequate characteristics in time-frequency domain (frequency scalogram) 
than in time-scale domain (scalogram), this is very appropriate in technical 
diagnostics. Based on normalization, the transform matches the Parseval 
characteristic of energy preservation; this means that the energy of wavelet 
transform equals the energy of the original signal in time domain. Wavelet 
analysis is suitable primarily for non-stationary phenomena with local changes. 
Therefore, the analysis was carried out to establish the condition associated with 
the presence of a crack in a tooth root; the purpose was to identify the location of 
the crack, i.e. to define the tooth. For analysis, the analytical continuous wavelet 
transform, with parameters η = 6 and σ = 1, was used. The highest frequency in 
the signal (6250 Hz) was acquired on the basis of Nyquist frequency and the 
frequency of sampling the measured time signal. For analysis, a part of the signal, 
representing one whole rotation of the tooth, i.e. of a pinion with a crack, of 50 
ms, was used. It is evident from the figures relating to the faultless gear, in the 
frequency scalogram, that there are no particularities in expressed components 
that would indicate local changes, which applies for a square representation 
(Fig. 7) of wavelet coefficients. The matter is different when analysing the signal 
produced by a gear with a crack; this signal shows a local change in wavelet 
coefficients, in time, at the value of 11 ms, in frequency scalograms (Fig. 8). 
Local change, i.e. the presence of transients, can be noted where there is the tooth 
with the crack in its root. If the wavelet length is 50 ms, which represents one 
rotation of the pinion, and there are 19 teeth along the circumference, the 
increased amplitude is located at 11 ms and belongs to the fourth tooth in the 
direction of rotation from the reference positional point of the gear unit.  
 

 
 

Figure 7: Average Gabor frequency scalogram of square wavelet coefficient of 
the reference gear unit 
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Figure 8: Average Gabor frequency scalogram of square wavelet coefficient of 
the gear unit with a gear with a crack in a tooth root 

 
 

5. Conclusions 
 
Vibration analysis for fault detection in industrial gear units is presented; the 
described methods can increase the safety of operation and, consequently, the 
reliability of monitoring operational capabilities. 
The condition of a gear unit can be monitored in a more reliable way if 
appropriate spectrogram samples and a clear presentation of the pulsation of 
individual frequency components are used; they, along with the average spectrum, 
represent a criterion for evaluating the condition of a gear unit. Adaptive time-
frequency representation primarily enables a reliable prediction. The 
representation is clearer, without increased dissemination of signal energy into the 
surroundings.  
A wavelet transform can make it possible to identify changes in a very short time, 
and to determine the presence of a damage, at the level of an individual tooth. An 
appropriate method or criterion makes it possible to monitor the actual condition 
of a device and its vital component parts, which can have a considerable impact 
upon the operational capability. By detecting faults and damages in time, the 
reliability of operation control is significantly improved. A high level of 
reliability of detecting faults improves the prediction of the remaining life cycle 
of a gear unit. 
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