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1 Introduction

Ductile damage plays a significant role in many forming psses which induce
large strains. Coupled damage-plasticity models have beapnte successful at
predicting the underlying porosity initiation, porosityogvth/coalescence and lo-
calized deformation. In the present paper we adopt a scataage variable which
isotropically affects the elastic and plastic responsénefrhaterial. The model is
fully nonlocal to avoid pathological localisation effeétere we focus on its imple-
mentation in a three-dimensional tetrahedral element.

Tetrahedral elements are often used because mesh gesearatoreliably mesh
complex geometries with them. To reduce computational gjnh@v order ele-
ments are preferred, but it is well known that when extra trairgs are applied
these elements may show a poor performance. For instanaeagading with in-
compressibility or near incompressibility they may showking behavior. Some
approaches have been developed in the literature to avsigribblem. The avail-
able approaches can be categorized as follows. (1) Stabilmixed elements by
enriching the displacement using a bubble function. (2hgsnesh-dependent per-
turbation terms. (3) Mixed-enhanced strain stabilizati¢f) Orthogonal sub-grid
scale methods. (5) Finite increment calculus methods. ¥8jage nodal pressures
or nodal deformation gradients. Here we use a mixed fornauatith an addi-
tional bubble displacement, because it can be used in lafgperdations and it can
be implemented in a relatively straightforward fashionr €ficiency reasons the
displacement bubble is condensed out of the equations ateheent level.

In section 2 the mixed version of the coupled damage-elsttipity formulation
on which the element is based is explained. The Finite eleimgiementation of
the model using bubble enriched displacement field is inkced introduced in sec-
tion 3. A numerical example is given in section 4 to demonstthe performance
of the method and the conclusion is given in section 5.



2 Coupled damage-elastoplasticity model (mixed version)

This section summarises the equations used in the threariwdigl and its imple-
mentation. The elastic response of the material is disdussgection 2.1. Section
2.2 explains the plastic evolution. Then the damage growthreon-locality are
explained in section 2.3.

2.1 Elastic response

The coupled damage-elastoplasticity model follows eyattte same lines as in
[1]. Continuum Damage Mechanics is used, in which the damagahlew, rep-
resents the effect of damage on the material’s mechanispbrse. The concept
of an effective stress is used in order to characterize tleetedf the damage [2].
According to this principle the response of a damaged natisrgiven by the con-
stitutive laws of the virgin material in which the (KirchHpstress is replaced by

the effective stress [3]
T
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The establishment of a coupled elasto-plastic damage alateodel considering
finite deformations is based on the multiplicative splitloé deformation gradient
F = Fe.Fp into an elastic parffe and a plastic paf . This multiplicative decom-
position inherits all features of the classical models dihitesimal plasticity [4].

The effective Kirchhoff stress tensor is decomposed as
t=" 42 2

in which " is the hydrostatic part of stress abliis deviatoric part. Each of these
parts satisfies the following elastic relations:
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wherebe = Fg - Fg is the elastic left Cauchy-Green deformation tensor, which
is used as a non-linear measure of elastic strain,karahd G are bulk and shear
modulus respectively.

2.2 Plastic deformation

Classical J2 plasticity is used here. This implies that thstel domain is defined
in terms of the effective stress as

q@(f, Ty) =Teq— Ty <0 )
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In equation (5)eq is effective stress, which is defined as

. 3. -
Teq: él’d . Td (6)

The evolution of the plasticity related internal variabkesbtained by the assump-
tion of associative plasticity [2]:
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be: 8'? Ve (7)
. 09T, Ty)
Ep = VTy (8)
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y >0, ¢(F,%y) <0, pd(£, %) =0 (9)

\%
be in the first of these equations is the Lie derivativédgf Finally plastic hardening
is governed by the hardening law

7y = heép (10)

2.3 Damage growth

Combining equations (1) and (3) shows that the damage varédgcts the elastic
response of the material. Similarly, it also affects thddysurface via (1), (5) and
(6). In a nonlocal formulation the evolution of the damageatsle,wp, in a certain

material point not only depends on the loading history ot fha@nt, but also on
surrounding material points. The damage evolution is geeeby the rate law:

whereh,, is a step function

Kc—Ki

1 -
if ki <k <ke
he = : 12
{ 0 otherwise (12)

andk is a history variable. Damage grows only wheneaches an initial valug
and atk = k¢ the material carries no load and fails completely. The aumiuof «
is obtained by Kuhn-Tucker relations

k>0 zZ-k<0, kZ—«)=0 (13)

in which initially « is assumed to be.



In the above equationis a nonlocal damage driving variable which is calculated
by averaging a local variable The implicit gradient formulation of that averaging
reads

72— 0°V’2 = z (14)

whereVv2 and¢ are the Laplacian in the current configuration and an intéength
parameter respectively. To solve the above Helmholtz P@Eetis a need for a
boundary condition, which is here of the Neumann type

VziA = 0 (15)

with i the outward normal. This additional boundary value probfenst be solved
simultaneously with the equilibrium equation.

The local variable in it can be chosen in a manner to account for the influence of
the stress triaxiality on the damage growth. Here it is takdre

7= hyip (16)

In which h; is of the form proposed by Goijaerts et al. [5]

X, x>0

0, x<0O (17)

h, = [1+ A j 68 with [x] = {
Teq

The influence of the effective plastic strain and triaxjatian be adjusted by selec-

tion of the material constansandB.

3 FEM implementation using enriched mixed formulation

The material behavior described in section 2 is now impldetemising a tetra-
hedral element. To avoid locking we use an independent yreghiscretisation
together with a bubble displacement enrichment. The imptaation of the de-
scribed model is similar to that of [1], but here, becausenhed form is used, an
additional partial differential equation for the effedilydrostatic kirchhoff stress,
" has to be satisfied. The derivation of the weak form of thetiqus is explained
in section 3.1 and the discretization of this weak form witie@tion to the addition
of the bubble displacement field is discussed in section 3.2.



3.1 Weak form of the equations

The governing PDEs to be solved simultaneously read:

- 1 .
VI +rd)3] =0 (18)
1
th = K1 :Inbe (19)
z—2V%z = z (20)
The related boundary conditions of the above equations read
i = o on S (21)
f:ﬁ% - on S (22)
VZ-fi = 0 on S=SUS (23)
The weak forms of the PDEs follow by the usual arguments as:
o 2NT . o.h dy 1 o
/(V(,b) (Tl + 7 )de = /(,b gdr (24)
r
fw( — —KI Inbg)d2 = O (25)
/ (22 + 0PVes - VZ— $p;20dQ = 0 (26)

whereq?, ¥ andg; are weight functions correspondingtdpz" andz.

3.2 Discretization using bubble enrichment of the displacaent

Standard discretization of the weak forms derived in sacdid results in a system
of equations which shows an overly stiff response, whiclmmonly termed lock-

ing. The treatment that we use here is that the displacemerha corresponding
weight function are split into contributions in two spaces

(27)
(28)
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The termd’ (andq_ﬁ’) is discretised using the standard linear shape functidhs.
additional displacement field’ vanishes on the element boundaries and therefore
has no effect on the overall displacement. Although it wélldondensed out of the
equations at the element level, it will greatly improve thengent’'s performance.
The interpolation for the bubble displacement and weighfimction is given in
terms of the volumetric coordinates, Ao, A3 associated with tetrahedron as

N” = 2560 1A2A3(1 — A1 — A2 — A3) (29)

The hydrostatic Kirchhoff stres€", non-local damage driving variablé, and
standard displacement;,, and their corresponding weight functions are interpo-
lated linearly within the element - see Figure 1. We denogediscretisation thus
introduced
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0 = NTO (30)
7 = N’Tg (31)
sh N/Tih (32)
i = NTT (33)

Application of the discretisation to the weak form and sujostly eliminating the
coefficients of the weight functions results in a system afiim@ar equations of the
form

B F (34)
~Int ~ext

F' =0 (35)
~int ~

F©' = 0 (36)
St 2

FZ =0 (37)

~int



in which the following terms have been used

F = /Nﬁdr (38)
~ext ~
r
_ R 1
= /VN/-(r“|+rd)—dQ (39)
~int ~ J
Q
. R 1
B = /VN”~(rhI+rd)—dQ (40)
~int ~ J
Q
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F©' = | N'(#"= ZKI : Inbe)dQ (41)
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whereq is the traction vectoiN’ andN” are the columns of shape functions and

IS the gradient with respect to the current coordinates.Bdwkward-Euler method
is used to calculate all history dependent variables in-(392).

We linearise and then condense out one equation per elenmgtt finally results

in three sets of equations to be simultaneously solvedadstéfour. The solution
to the aforementioned system of equations consists of thispdacement compo-
nents, one hydrostatic Kirchhoff stress and one non-loaalatje driving variable
per corner node, as well as three bubble displacements inathe interior to the

element as shown in figure 1.
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Figure 1: Location of the bubble node in the tetrahedral el®m

4 Numerical example

To study the performance of the element a variant of Cook’s bmane problem is
investigated in a three dimensional simulation. It coss$t tapered plate clamped
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Table 1: Material properties used in the Cook’s membrane test

Shear modulu& 80.19GPa
Bulk modulusk 164.21GPa
Initial flow stressryo 0.45GPa
Residual flow stressy, 0.715GPa
Linear hardening coefficiert 1.290GPa
Saturation exponert 16.93
Damage initiation threshold 0.05
Critical value of history parametet 0.90
Intrinsic length¢ 2mm
Damage parameteXx 14
Damage parametd 0.5

at one of its sides while a shearing displacement acts ontkiez side - see Figure
2. One element through the thickness is used and all surfagesnin the three
dimensional mesh are constrained in the direction perpeatatito the plane of the
sketch in order to have a plane strain situation. A verticgdldcement of u =7 mm
is applied to the nodes on right edge of the plate. In our stians, we compare
the performance of the standard isoparametric formuldtioear tetrahedral) and
the formulation developed above. The material parametersh@sen in a way to

48
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44
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Figure 2: Geometry and finite element discretization of tloeleh.

induce damage during deformation. Table 1 shows the mbhproperties used in
this test.



The reaction force on the right edge of the plate versus $@atiement as obtained
with the methods indicated above is compared to that oldayethe standard
element. Figure 3 demonstrates that upon refining the mieslturves associated
with the standard element are tending to converge to a ursigjugion.

The figure clearly shows that the coarsest standard isogdiriarformulation over-

estimates the force. The force versus displacement cunaneld using the new
element in a coarse mesh is much closer to the refined mesingstiis standard
formulation and thus does not show a pathologically stifidaeour. This element
thus has the ability to generate more accurate solutions fewvecoarse discretisa-
tions at a limited additional cost. Figure 4 shows the danhsteibution at the end
of the deformation process.

Reaction forces versus displacements
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Figure 3: Force versus displacement of the standard and leemest while using
different mesh refinement.

5 Conclusion

We have presented an implementation of a three-field loverondn-local elasto-
plastic damage element which prevents locking. In this @npntation an addi-
tional field, the hydrostatic Kirchhoff stress, is discsetl and the element displace-
ment is enriched by a bubble. The enrichment does not add touhk calculation
time as it is condensed out at the element level. The elenefdrmance is tested
by using a benchmark problem and it shows superiority owestandard elements
in dealing with incompressibility.



Damage value

Figure 4. Distribution of damage within the plate.
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