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1. Introduction

This paper outlines a non-conventional modelling approach, called morphological
approach (MA), specifically addressed to highly-filled particulate composites in
which damage consists in grain / matrix debonding. Some energetic composites,
notably propellant-like materials and high explosives, could be concerned as
studied with regard to their vulnerability.

The MA stands as a direct scale transition approach whether material and / or
geometrical non-linearities are at stake. This feature makes it relevant to deal with
damage. First, the MA starts by a direct geometrical schematization of the real
initial microstructure in which each grain and matrix intergranular zone are
explicitly represented (with no mesh). Moreover as shown for example in [1] for
sound materials, the MA does not require any prior linearization of local non
linear constitutive laws contrarily to homogenization schemes referring to the
notion of equivalent linear composite, see [2] for a review of existing linearization
procedures and their possible influence on the global estimates. The MA solving
procedure for sound viscoelastic composites [3,1,4] regards directly the time-
domain without using the Laplace-Carson transform (see also [5]). At last, the
MA allows to access to local field estimates with fluctuations in the matrix
governed by local morphology. This feature is essential for the description of
interfacial damage.

In fact, the origin of the above advantages lies in the coupling between the
aforementioned explicit geometrical schematization and a simplified kinematical
description (assumptions regarding the displacement field). Those two ingredients
have been initially proposed by [6] for sound, elastic ‘bonded granulates’. The
non-linear developments mentioned above for sound materials have proved the
efficiency of these two very bases. In particular, the relevance of the kinematical
description has been appreciated through comparisons of local and global
estimates with FE calculations for specific periodic hyperelastic and
viscohyperlastic composites [1] and random ones [7].

The specific contribution of the present work lies in exemplifying how the
progressive microstructural damage events, i.e. formation and closure of
interfacial defects on the grain / matrix contacts, is being followed in the
framework of the MA, small strain version. Sec. 2 recalls the theoretical
background detailed in [8] of the MA in the presence of interfacial damage with
no ingredient to trace its evolution. The principal ingredients of the MA
(schematization of the microstructure, different stages of the solving procedure
for a fixed number of open and closed defects) are first recalled. Then, analytical
results obtained at both scales for linear elastic constituents (grains and matrix)
are briefly presented as an illustration of the effects captured by the MA. The
ingredients necessary to describe damage evolution are given in Sec. 3, where the



nucleation and closure criteria for the defects are summarized. Sec. 4 gives a
numerical illustration of the ability of the MA to deal with damage evolution in a
random three-dimensional composite containing 400 grains submitted to a
complex loading path. The homogenized response is discussed with special
attention paid on the evolution of the damage induced anisotropy as a function of
the chronology of local damage events (discrete sequence of nucleations and
closures). The ability of the MA to give access to the position and morphology of
interfacial defects, is illustrated through 3D representations of the damaged
microstructure.

2. Morphological approach in presence of damage (fixed state) by [8]
2.1. Direct geometrical schematization of the initial microstructure

The random microstructure of a highly filled particulate composite is represented
by an aggregate of polyhedral grains interconnected by thin matrix layers with
constant thicknesses. This schematization is illustrated in Fig. 1. For each layer ¢,
four morphologlcal parameters” are identified in the initial configuration, [6]:

e 1“ the constant thickness of layer &

® A7 the projected area of layer ¢, the associated volume is then 4% h*

. d 'the vector linking the centroids of the polyhedra separated by layer «

e n? the unit vector normal to the plane interface grain/layer o.

Once the grains are approximated by polyhedra (satisfying the condltlon of
parallehsm between the interfaces of opposite §ra1ns) the parameters d“, n” and
h? are readily identified. The projected area 4 leadmg fo the definition of the
matrix zone between two neighboring grains called “layer &’— is identified as
follows. Starting from the centroids of the two grains, the two opposite interfaces
are projected on the middle plane of the 1ntergranular zone. Then, an average
prOJectlon is defined and chosen as the area A% In this way, layer & (associated
volume 4% h*) does not correspond exactly to the matrix zone strictly confined
between the two opposite interfaces. It can be larger as illustrated in Fig. 1c (2D
representation).

Practically, the challenge is to optimize the polyhedrization process, namely the
correspondence of the “true” microstructure with the schematized one, in order to
confer a fair relevance on the morphological parameters. X-ray tomography
together with available tools of morphological analysis of 3D images may be used
to this aim.

One may emphasize the direct and explicit character of such a schematization
since each grain and each matrix intergranular zone are represented in relationship
to the real material morphology. This feature differentiates the MA notably from
the Eshelby-based self-consistent-like estimates.

Layer o

Fig. 1. Illustration of the geometrical schematization: a) real microstructure (X-ray tomography),
b) schematized microstructure, c) morphological parameters for a layer ¢, [6].



2.2. Localization-homogenization problem: principal tools and stages of the
solving procedure

The second set of starting hypotheses of the MA consists in simplifying
kinematical assumptions regarding the local displacement field in the schematized
volume. They are recalled below within the linearized deformation (small strain)
framework, [6]. The grain centroids are displaced so as to conform to a global,
homogeneous displacement gradient F (data for the local problem). The grains
themselves are supposed homogeneously deformed and the corresponding
displacement gradient f” assumed to be common to all grains of the schematized
volume. Each interconnecting layer is subjected to a homogeneous deformation,
proper to the layer o under consideration and noted f% Local disturbances at grain
edges and corners (see circled zone in Fig. Ic) are neglected on the basis of
thinness of the layers.
The interfacial defects and relative displacement jumps have been incorporated by
[8] in a compatible way with this kinematical description. It is proved that the
displacement discontinuity vectors across debonded interfaces are necessarily
affine functions of the spatial coordinates. This means that the simplified
(piecewise linear) kinematics proper to the MA does not allow accounting for
partial decohesion of grain/matrix interfaces: there is either decohesion almost
everywhere, or there is no decohesion. Moreover, the second hypothesis regarding
as common to all grains, imposes only two possible configurations for a layer
a. either no decohesion, or simultaneous decohesion of its both interfaces. In
order to make acceptable this double decohesion (if any), a supplementary
constraint to the geometrical schematization has been added by [8]: any two
opposite interfaces must have close geometrical properties (shape and area).
Furthermore and considering the parallelism of opposite interfaces in course of
deformation, the authors consider that the mean displacement discontinuity
vectors across the interfaces of a debonded layer o are opposite.
By taking into account conditions of displacement jump (with affine form for the

jumps bf = f;D v;, see [8] for details), the displacement gradient f% for a
debonded layer « (i.e. with defects at its interfaces), is given by Eq. (1),. For a

layer a whose both interfaces are cohesive f” is obtained by using the continuity
of displacements on the grain/layer interfaces (see Eq. (1),):

fllo + (Fik —fIZ) s n;‘/h“ + fU“D if the layer o is debonded

f,.j.’ +(F,.k —fl.Z)d,f n%/m if not

(¢4
U.

M

The supplementary term f*° in Eq. (1); represents the specific contribution of two
interfacial defects located at the interfaces of the debonded layer o considered. If
the material is sound, f*is obviously given by Eq. (1), for every layer a.

The MA morphology and kinematics framework in the presence of damage
allows taking into account some strain heterogeneity in the matrix seen as an
assembly of layers with different geometrical characteristics. This heterogeneity is
not only governed by local morphology but also by local damage events (see the
dependence of f“ on the morphological parameters proper to the layer o
considered and on f* for debonded layers). This is a positive feature in the
context of non linear homogenization since local heterogeneity has to be taken
into account to ensure a fair estimate of the global behaviour, (see e.g. [9]).



The compatibility between local motion defined above and the global one
characterized by the given displacement gradient F (i.e. F = < f >V + contribution

of defects) is ensured through a geometrical condition to be satisfied by the
morphological parameters of the schematized material, see [8] for detailed form
and interpretation.

For a given number of open and/or closed defects, the grains displacement
gradient £’ is deduced from the use of the generalized Hill lemma, by employing
the local constitutive laws for the grains and the matrix and using the hypothesis
of no sliding, i.e. infinite friction coefficient presumed on closed defect lips (see
Sec. 3 in [8] for details). Then, the knowledge of f° allows the backwards
calculation of the composite response at both scales: f~ for any layer & by using
Eq. (1), local strains and associated stresses by the local constitutive laws and
finally the homogenized stress tensor by volume averaging of the local one.

The foregoing solving procedure remains valid whatever are the constituents’
constitutive laws. This procedure is analytical in the small strain framework. At
this stage, it is nevertheless partial. Indeed, since nothing has been formulated
regarding the detailed expression of the displacement jumps in function of
macroscopic displacement gradient F (except their linearity with respect to local
spatial coordinates due to the kinematical description), the local fields and
homogenized stress will be expressed in function of the set {f*’}, more precisely
the set of their symmetric part. This offers an advantage to identify in an explicit
way the contributions of defects in the expressions obtained at both scales (see
Eq. (6) in Subsec. 2.3 for an illustration). Evidently, a complementary stage,
depending on the local behaviour of constituents, is required to explicit some of
the damage-induced local quantities. In Subsec. 2.3 are summarized the basic
results obtained for isotropic linear-elastic constituents (grains and matrix).
Within this framework, a complementary localization-homogenization approach
has been put forward.

2.3. Results in elasticity and complementary localization-homogenization
approach

In the case of isotropic linear-elastic constituents (grains and matrix), the
analytical expressions of the local strain field and of the homogenized Cauchy
stress tensor, resulting from the first stage of the scale transition according to the
methodology summarized above, depend on the following quantities in addition
to the elastic moduli of constituents:

Global strain E=Sym. F 2)

Damage-induced strains:

{E,b’D; pe Lopen} {EjD’. fe Lclosed}) 3)

Initial morphological tensorial parameter:
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Damage tensorial parameters:

1 — 1
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The strain of any layer ¢ in the schematized volume, i.e. €=Sym. f% is also
function of its local morphological parameters according to Eq. (1).

In Eqs. (3) and (5), L%, respectively L, represents the set of layers with
open, respectively closed, defects at their interfaces. In accordance with Eq. (1),
the strain &°=Sym. f*°, respectively £€°=Sym. f*, represents for a layer Se L%,
respectively fe L, the contribution of open, respectively closed, defects at its
own interfaces to the total strain of the layer. In Eq. (4), superscript ¢ under the
summation symbol denotes summation over all layers (debonded or not).

The estimates at both scales account for initial morphology and internal
organization of grains inside the volume through the presence of the macroscopic
fourth-order structural tensor 7 given by Eq. (4). The reader may refer to [6]
where it is shown that T reflects possible material texture (initial anisotropy) and
irregularities in grain shape and in layer thickness. Moreover, the two tensors D
and D emerge naturally in the local and global estimates. They stand as
macroscopic damage parameters testifying about degradation mechanism
generated within the aggregate. Since no sliding has been considered for closed
defects (infinite friction coefficient), these defects do not contribute to the
degradation of the material (see the summations over layers fe L in Eq. (5)).
Note also the morphology influence in the very nature of D and D : these tensors
account for the granular character of the microstructure through the vectors o

involved in their definition in addition to the defect normal vectors n”. The
tensorial parameters D and D - in addition to the textural tensor T related to
initial morphology - allow to account, in a general 3D context, for coupling of
primary anisotropy (if any) with the damage-induced one.

As an illustration, the form of the strain & for any layer a (debonded or not) is
given below:

(ol
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Three contributions are put forward in Eq. (6), the two first ones depending on
global parameters related to initial morphology ( 7 ) and damage configuration (D
and D) and on local morphology of the layer o considered: The first one, £, is
reversible with respect to E (with C” the corresponding strain localisation tensor
degraded, via D and D, by the presence of open defects inside the volume). The
second one, £, involves the full set { D}u{éD} related to the effect of any kind
of defects (open and closed) in the material. The last one, €%, corresponds to the
contribution of the defects (if any) at the interfaces of the considered layer a.
Due to infinite friction, £°, for a layer fe L9 with closed defects at its
interfaces, does not depend on the macroscopic strain E since no sliding is
allowed. As a result, the set {€”} acquires the status of internal variables
accounting for the distortion due to the blockage of closed defects inside the
volume. On the contrary the opening of a defect naturally depends on E and
therefore the local induced strain € for any layer S L% as well. This is why
the foregoing scale transition has been completed by a second stage —called
complementary localization-homogenization procedure in [8] - in order to
establish the explicit dependence of & on global strain E. Using thermodynamics
as a guide, the mean advantage of the advanced approach is its possible
generalization for time-dependent materials. In elasticity, the strain &P induced in
a layer f by the open defects at its own interfaces, is obtained as a function of E,
and local morphological features as follows:

P =_1a
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The detailed form for M g‘ D, D) depending on elastic properties of constituents is
given in [8]. Note that & is influenced (via by global initial morphology and
damage configuration. The constant tensor P with respect to E, represents a
residual strain induced in the layer S by residual opening of the defects at its
interfaces for E = . Physically, such a residual opening is linked to the roughness
of corresponding interfaces. With Eq. (7), local strain field and global response of
the elastic damaged composite, are expressed in terms of global strain E,
distortion internal variables {E(D}, residual opening strain-like quantities {rg Dy in
addition to global parameters related to initial morphology (7 ) and damage
configuration (D, D). For example, the form of the homogenized stress becomes:

£=i1.0,D): E+ @ +2}T,0D)+ 2@ £"}.7.D,D) (8)

3. Damage state and configuration evolution, discrete modelling

Thanks to its explicit schematization of the real microstructure, notably of the
grain/matrix interfaces, in addition to the accessibility to an estimate of local
fields, the MA allows to treat damage evolution at the local scale (that of the
constituents). Thus, instead of considering D and D as macroscopic damage
internal variables and establishing evolution equations for these variables, the
direct discrete modelling is put forward here considering the sequence of discrete
interfacial local damage events. In such a strategy D and D remain as damage
parameters reflecting current induced degradation and anisotropy in the local and
global estimates as presented above.

Two criteria are to be formulated now. The first one concerns the nucleation of
defects, and the second one is a closure criterion which allows describing the
evolution of damage configuration (i.e. the respective proportion of open and
closed defects for a given total number of defects). Practically, the both criteria
will be tested for each increment of a simulated loading path. When a criterion is
satisfied for one or several interfaces, the parameters D and D will be actualized
in consequence (by adding or suppressing corresponding layers in the
summations, see Eq. (5)).

3.1. Nucleation criterion

Following the hypothesis of no sliding (‘infinite friction coefficient’), the
nucleation is supposed to happen in a mode I way.

Consider a layer a with sound interfaces. The displacement field in this layer is
noted u”, and it is noted u” in the grains. Two particular points P; and P, are

defined on each side of the first interface 77, the one in the grain and the other in
the matrix. Both points are equidistant from their normal projection B; on the
interface, with B; the gravity center of /7 (see Fig. 2).

3P, — 3,
]51 PP = 2R

24
I II

Laver a

Fig. 2. Definition of testing points P; and P,.



The difference Au=u®(P,)-u’(P,) is expressed using the linearity of the fields u”
and u” (according to the kinematical assumptions, see Subsec. 2.2) and Eq. (1),
for f% The knowledge of Au allows to evaluate the normal projection of the
difference of actual positions of P; and P,. It is then considered that when this
distance, noted d%,,,,, reaches a certain critical value, decohesion happens at the
interfaces of the layer &

dr(tlorm = dcritical And debonding ’ d;txorm =21+4ue n® (9)
The expression of d%,,, involved in the criterion shows that the nucleation of
defects at the interfaces of any layer ¢ is conditioned by the local morphology in
the neighbourhood of the interfaces (via geometrical features of the layer o
considered in Au) and by the orientation of the interfaces (via n”). Moreover the
nucleation depends in the same way for all layers (via 4u), on initial global
morphology and on damage configuration if any other layer is already debonded
in the volume (see [10] for detailed form of Au).
The value d..iicq1 1S @ sort of critical defect-incipience opening, depending on the
material studied and linked to the adhesion properties of the matrix and the grains.
The identification of dg.ieqs for a particular composite will depend on the
characteristic length 24 (distance chosen between two points P; and P, on each
side of the interface).
Since decohesion is supposed to take place in a normal mode, a layer & for which
Eq. (9) is satisfied becomes a layer of type f (namely with open defects at its
interfaces). The summations involved in the definition of the damage parameters
D and D are actualized by adding this new layer. The direct contribution of the
defects to the total strain of the layer £ is given by Eq. (7).

3.2. Closure criterion

The closure criterion is given in terms of local normal displacement jump in the
following way for a layer f with open defects at its interfaces:

While <bﬁ >1 5°® n? >0 defects at the interfaces of the layer 3 are open,
1

When <bﬂ >1 2° n? =0 defects at the interfaces of the layer S are closed.
1

The test of the closure criterion requires the calculation of the average

displacement jump <bﬂ >1 at each loading step following the nucleation of

B
1
defects at the interfaces of the layer f. Considering the affine form of the jump
across the interface 77, the latter is linked to £ via: <bﬂ >1 ;= £PP B with B

the coordinates of B;. The symmetric part of f*°, namely £, is known via Eq. (7).
The determination of the rotation @’ =Antisym. fD makes use of a specific
treatment whose only the principal stages are presented here, (see [10] for details).
It is supposed that the rotation axis of the layer £ after debonding corresponds to
the edge of the interface /7 f for which the difference of displacement vectors of

two points on each side of this edge is minimum just before nucleation of defects.
A local basis associated to the layer is thus defined and conserved further. The
rotation tensor " is calculated at each loading step using this basis and in such a
way that the mean displacement jumps on both interfaces be opposite. By this



way, f” and therefore the mean displacement jump may be evaluated and the
closure criterion performed at each loading step.

When the closure criterion is satisfied, the layer f becomes a layer of type f
(namely with closed defects at its interfaces). The contribution, &P, of closed
defects to total strain of the layer is obtained using Eq. (8) at defect closure:

8fD =5ﬂ D(E closure,B) ( 1 O)

with E¢jaurep designating the corresponding global strain tensor. Due to the
infinite friction coefficient, &” does not evolve as long as the defects remain
closed. Then, the summations involved in the definition of the damage parameters
D and D are actualized by suppressing the layer at stake.

4. Numerical illustration

A discrete numerical solving procedure to estimate, via the MA, the local and
global responses of a material under a loading generating damage has been coded
in Fortran 90. As an illustration of its applicability and qualitative relevance, the
results obtained in the case of successive or simultaneous discrete interfacial
events (nucleation and closure of defects) occurring in a specific three-
dimensional random composite are presented.

4.1. Material description and loading path

The composite studied is constituted of 400 polyhedral grains embedded in a
matrix occupying 25 per cent of the total volume. Such a microstructure has been
numerically generated in order to respect the requirements of the geometrical
schematization (polyhedral grains, plane and parallel opposite interfaces...) and
the compatibility condition briefly mentioned in Subsec. 2.2.

The morphological parameters h% A% n® and d” (see Subsec. 2.1) have been
identified by simple geometrical measures for each of the 2400 layers present in
the microstructure. Elastic moduli of the constituents are: £ = 120GPa, v = 0,3
for the grains and £ = 4GPa, v = 0,45 for the matrix. For the simulation presented
in the following, the critical value, d a1, and associated quantity A involved in
the nucleation criterion are tentatively chosen as follows: d. iicas = 3,548 pim and 4
= h/10 where h=0,029mm is the thickness of the thinnest layer in the volume. At
last, the roughness of the interfaces is neglected and therefore strain-like
quantities ¥ are taken as nulls.

The macroscopic displacement gradient F (and corresponding E) are the only data
required by the MA to define the loading path; indeed no boundary condition has
to be explicitly posed on the volume boundaries. The composite is subjected to
the following loading path:

1/ “Tension”: incremental extension in the direction 1 (4F;;>0) whereas
contractions are applied in directions 2 and 3 with AF,, = AF33=-0,3 AF ;.

2/ Simple shear: AF;,> 0.

3/ “Compression”: incremental loading inverse to the first one: AF;;< 0 and 4F>;
= AF33 = —0,3 AF[].

4.2. Homogenized stress as a function of damage local events

All the interfaces being characterized and the criteria formulated at the scale of
these interfaces, the MA gives access to the position and morphology of defects
within the microstructure in addition to the homogenized response. These results



allow 3D representations of the damaged microstructure. Since the nucleation has
been supposed in normal mode, a defect is open before being possibly closed. In
order to clearly detect the opening/closure transitions, only open defects are
represented in the visualizations. When open defects are nucleated they appear
and when they close they disappear. Obviously, it does not mean that closed
defects are no longer present in the microstructure. Fig. 3 presents the evolution
of the homogenized stress 2;; with macroscopic axial strain £;;. For significant
points ((1) to (9)) in Fig. 3, Fig. 4 presents 3D visualisations of the microstructure,
showing the position and orientation of open defects, and also representations of
the homogenized Young’s modulus in the plane (1,2), i.e. E(m) with m an
arbitrary direction of the plane. These representations allow to follow the
evolution of damage induced anisotropy (embodied by the tensorial parameters D
and D). Parallel setting of Figs. 3 and 4 allows the following observations:

- (1): sound material, elastic linear behaviour.

- From (2) to (4): progressive nucleation of defects (red) with normal close to 7 as
expected with a nucleation criterion in normal mode considering the loading
applied. The response is non linear with progressive softening. At the end of
«tensiony, E is principally degraded in the axial direction 1.

- Between (4) and (5): the simple shear leads to the nucleation of defects (green)

with normal more dispersed. These defects add to the first population. The

parameters D and D evolve, 2;; decreases whereas Ej; is constant. At the end (5),
the anisotropy is more pronounced, see the ellipsoidal form of £(m).

- After (5), the «compression» begins. A first stage, before the truly
«compression» (i.e. £j; < 0), consists in the unloading of £;; until £;; = 0. In the
zoomed zone (green in Fig. 3) one observes the progressive closure of defects, in
particular those nucleated in «tension» which are all closed in (7). This leads to

the progressive recovery of E (via suppression of elements in D and D). The
recovery is complete when the (green) defects nucleated during simple shear are
also closed (8). These results illustrate the ability of the MA to deal with
unilateral effects. At last, one observes residual macroscopic effects (see Fig. 3)
due to the distorsion of closed defects (through {efD 1)

- When pursuing the «compression», defects normal to transverse directions 2 and

3 are nucleated. At the end, £ is degraded in the direction 2 (see Fig. 4), but not in
the axial direction since the closed defects are blocked.
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interfaces
normal to 1

Z,, MPa @3

——Z11 Tension 1007 (2)
—=—Z11 Shearing 1) @)
— 511 Compression 20 - —(5)

‘ ‘ ‘ ‘ ‘ ) 1//«(:' o ‘
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Fig.3. Homogenized Z;; versus E;; for simulated “tension” - simple shear -“compression”.
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