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ABSTRACT  

Metal machining by chip formation is one of the mostly used industrial processes to obtain a 
final form of various mechanical components. Its numerical simulation (virtual machining) is 
today an increasing task studied by an increasing number of research teams in order to 
develop appropriated methodologies able to ‘optimize’ virtually the machining process under 
more and more severe conditions (High speed machining). This work proposes a complete 
numerical methodology combining ‘advanced’ elastoplastic constitutive equations coupling 
thermal effects, large elasto-viscoplasticity with mixed non linear hardening, ductile damage 
and contact with friction for 2D machining simulation. Fully coupled (strong coupling) 
thermo-elasto-visco-plastic-damage constitutive equations based on the state variables under 
large plastic deformation developed for metal forming simulation are presented. The relevant 
numerical aspects concerning the local integration scheme as well as the global resolution 
strategy and the adaptive remeshing facility are briefly discussed. This model is implemented 
into ABAQUS/EXPLICIT using the Vumat user subroutine. Applications are made to the 
orthogonal metal cutting by chip formation and segmentation. The interactions between 
hardening, plasticity, ductile damage and thermal effects are analysed.  

1. INTRODUCTION  

In today’s world, many companies, concerned by the manufacturing of high level products, 
are interested in avoiding long and expensive experiments and in fulfilling the quality, the 
costs and the duration requirements within the very concurrent industrial environment. To do 
that, the numerical methods based on predictive constitutive equations are needed. 
Particularly, the use of numerical simulations in machining processes (or virtual metal 
machining) is necessary in order to determine the optimal process plan virtually before its 
physical realization. However, nowadays, the machining plan of various materials is still 
performed using the specific knowledge of engineers based either on analytical methodology 
or experimental procedure [1]. These analytical solutions seem helpful to predict some 
simple parameters as the cutting force needed to form the chip for various cutting conditions. 
However, they can not be helpful for predicting the effect of the cutting parameters on the 
distribution of the thermomechanical fields and their evolution during the process, nor to 
allow the accurate prediction of the chip formation and possible segmentation.  

Nowadays, various Finite Elements (FE) software are proposed in order to simulate 



numerically different sheet or bulk metal forming processes by large plastic deformation as 
deep drawing, forging, stamping… However; much less FE softwares are available in order 
to simulate 2D and 3D metal cutting by chip formation processes (milling, drilling, cutting 
…) under various severe conditions (high strain rate, high temperature, strong friction, …). 
During the recent years, a great effort is done by the scientific community in order to enhance 
the numerical simulation of 2D and 3D cutting operations using rather simplified 
thermomechanical models. For example, the FE codes as Advantedge™, DEFORM3D® or 
FORGE2005®, LS-Dyna® oe ABAQUS® among others, allow the simulation of some 
simple machining operations using Norton-Hoff or Johnson-Cook type constitutive equations 
together with adaptative mesh facility. In these numerical approaches, the chip is formed 
thanks to the thermo-viscoplastic flow of the metal under the tool effect ([2], [3], [4], [22], 
[23]). Other works propose the use of local fracture criteria to propagate cracks which form 
the chips ([5], [24], [25], [26], [27]). These local fracture criteria are based either on 
equivalent stress, equivalent strain or a critical gap between the cutting edge of the tool and 
the nodes located ahead of the tool edge. The main crack propagates by using the nodes 
relaxation method ([5], [26]) or by the kill element method ([6], [7], [24], [25]). The chip 
formation can be also simulated using the ALE (Arbitrary Lagrangian Eulerien method) 
formulation in which the formed crack ([8], [9]). Finally some works ([20], [21]) use some 
kinds of mesh-less formulations (SPH method) in order to simulate the ship formation and 
breakage without dealing with remeshing techniques.  

This work is devoted to the presentation of a novel numerical metal cutting methodology, 
based on the ductile damage at finite strain and its effect on the other thermo-mechanical 
fields. We focus on the ‘strong’ coupling between thermal aspects and the elasto-visco-
plasticity fully coupled with the ductile damage including the mixed isotropic and kinematic 
non-linear hardening. Starting from an isotropic fully coupled finite strain elastoplastic model 
developed in previous works by Saanouni et al, ([10], [11], [12], [13]), isotropic thermal 
coupling is recalled from both theoretical and numerical points of view. The developed 
model has been implemented into ABAQUS/EXPLICIT using the Vumat subroutine. In this 
approach, the chip is formed due to the competing effects between the thermo-visco-plastic 
flow and the local ductile damage mechanisms ahead of the tool tip. Serrated chip and chip 
segmentation can be also naturally described depending on the process parameters as the 
material ductility, the cutting speed, the tool cutting angles, the chip thickness, etc…  
2. THERMO-MECHANICAL-DAMAGE COUPLED MODEL AND NUMERICAL 

ASPECT  

2.1 Fully coupled constitutive equations  

The fully coupled thermo-elasto-visco-plastic behaviour is modelled in the framework of the 
thermodynamics of irreversible processes with state variables ([14], [15]) assuming the small 
strain hypothesis. Extension to the finite plasticity framework is done using the so called 
rotating frame formulation. According to the first gradient formulation, two ‘external’ state 
variables are introduced: (ε, σ) for total strain tensor and the Cauchy stress tensor; (T, s) for 
absolute temperature and specific entropy. The ‘internal’ state variables and their conjugate 
forces are : (ε

e

,σ) for small elastic strain tensor and the Cauchy stress tensor;  

r ur uuuuur  
( q,g = grad(T ) ) for thermal flux vector and its conjugate force; (α,X) for back-strain and 



back-stress deviator tensors that describe the kinematic hardening (i.e. translation of the yield 
surface center); (r, R) equivalent plastic driving strain and stress representing the isotropic 
hardening (i.e. variation of the yielding surface size) and (D,Y) for isotropic damage and its 
conjugate force, which is also known as a damage strain energy release rate ([15]).  

Following this approach thee complete set of fully coupled constitutive equations is obtained:  

• State relations:  
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where: ( λ , µ ) – Lame’s constants, T – temperature, T0– reference temperature, ς – thermal 
expansion coefficient, kc – bulk modulus, C – kinematic hardening modulus, Q – isotropic 

hardening modulus, Cv – specific heat coefficient, ρ – material density and hi (D) – 
damage functions they chosen from:  
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• Evolution equations:  
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Eq.11 combined with the first law of thermodynamics (energy balance) leads to the 
generalised heat equation (Eq. 12) governing the temperature evolution ([10],  
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Where J2 (σ − X ) is the equivalent stress defined in the 
isotropic case by:  
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vp is the viscoplastic multiplier deduced from a viscoplastic potential written in 

hyperbolic cosine and it is given by:  
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By using Eq. 7 the equivalent (or accumulated) viscoplastic deformation rate is given 
by:  
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Parameters figuring in constitutive equations (Eq. 7-Eq. 16) are:a and b the non 
linearity coefficients of the kinematic and isotropic hardeningrespectively.S, s ,Y0and β 
define the evolution of isotropic ductile damage. 
k is the heat conduction coefficient.  
σ y is the initial size of yield surface.  

K
1 
and K

2 
define the material viscosity.  

Each of material parameters figuring in the model equations are written as functions of 
the temperature; by naming P one of those parameters, its evolution according to 
temperature is chosen like the following:  
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Where P is the value of the parameter at the temperature T , P0its value at the  

reference temperature T0, Tf 
is the melting temperature of the material and n is a  

temperature independent material parameter. Equation (Eq. 18) is applicable to all 



model parameters except Y0which depend either on the temperature as well as on the 
accumulated viscoplastic strain rate by the following equation:  
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2.2 Numerical aspects: adaptive methodology  

Numerical aspect and implementation of the presented model in ABAQUS/EXPLICIT 
are detailed in ([6], [7], [10], [11], [12], [13], [17]). The resolution of global 
equilibrium equations is based on dynamic explicit algorithm scheme and the resolution 
of local equations to calculate constrains and internal variables at each time increment 
is based on iterative implicit algorithm scheme using the elastic prediction and 
viscoplastic correction with radial return mapping [7].  

For 2D adaptive remesh we use the 2D mesher named DIAMESH2D and developed in 
[18]. This procedure adapts the mesh size and the loading path based on appropriate 
error estimates and used the 2D (linear and quadratic Quadrangular and Triangular 
element) [19]. Different steps of the 2D mesher are presented below:  

Step n°1: Meshing the initial part with respect to a max size hmax and the tools local 
curvature. Step n°2: Call ABAQUS/EXPLICIT with the VUMAT to solve the 
problems for the first sequence of the total loading path Step n°3: Get the final solution 
(displacement and state variables) at the end of the loading sequence for the current 
mesh [Mi] Step n°4: If there are some damaged elements which not exceeds a known 
number  
of elements and all the fully damaged elements have the smallest size h

endo 

. 
min  

These fully damaged elements are then removed and new part boundaries are defined 
with a new mesh size generated to the error estimates. If the size of any  

endo  

fully couples damaged elements exceeds h 
min 

or the total damaged element exceeds the 
prescribed number, the analysis is cancelled and a new loading sequence is worked out 
with a smallest value. Step n°5: using the error estimates based either on the local 
curvature of the tools at the contact boundaries and/or the Hessian of the plastic strain 
and damage rate, the mesh size is calculated Step n°6: Knowing the distribution of the 
new mesh size, generate the new mesh [Mi+1] using DIAMESH2D software Step n°7: 
Transfer data from mesh Mi to the newly created mesh Mi+1 by diffuse approximation 
and continue the analysis  

3. APPLICATION TO THE ORTHOGONAL CUTTING  



For the application to the orthogonal cutting we take the configuration used in  
[16] where the cutting angle is -6°, clearance angle is 5° with the initial mesh using 
quadrangular bilinear elements shown in Fig. 1. The part is clamped along the side of 
12 mm. The material parameters of the part defining the thermoelasto-viscoplastic-
damage are determined using the data given in [15] on the basis of the force 
displacement curves predicted by Jonson-Cook constitutive equations and concerning 
the AISI4340 stainless steel. They are given by: E=205000 MPa, ν =0.3, Cv = 457 
J/kg°C, ς= 1.70 10

-5 

°C
-1 

for the thermo elasticity. σ y =792  

MPa, Q=1050 MPa, C= 18000 MPa, b=2.6, a=60, K1=45, K2 =50 MPa for the 
viscoplastisity and S= 40 MPa, s=2, β =5, Yr=6 for the damage evolution equation. All 
these parameters are identified at the reference temperature T0 = 20°C and their 
evolutions with respect to the temperature are governed by Eq. 18 and Eq. 19. In Eq 18 
the parameter n=0.3 for all parameters except for the  
parameter S were n=1.5, while in Eq. 19 the parameter ϖ =800. The material 
conductivity is taken equal to zero to fitful the adiabatic condition. Finally the melting 
temperature for this material is taken Tf = 1520°C .  

 
Fig. 1 Orthogonal cutting (initial mesh). The tool is meshed using the same element 

type and is supposed purely thermoelastic solid define by: E=450 000 MPa, ν =0.22, Cv 

= 400 J/kg°C,  
ς= 1.37 10

-5 

°C
-1 

.  

 
 (a) Adapted mesh (b) Mises equivalent stress  
 (c) Temperature (d) Equivalent viscoplastic strain  
 (e) Viscoplastic strain rate (f) Ductile damage  
 



 

 
Fig.2: Distribution of some thermomechanical fields at 0.19 mm displacement of the 

tool.  

Fig. 2 summarizes the distribution of the main thermomechanical fields inside the 
cutted part after u=0.19 mm of the tool displacement. The Fig. 2a shows the good 
working of the mesh adaptation procedure where the mesh is highly refined along the 
primary adiabatic shear band, along the secondary shear band and as well as at the 
contact interfaces. Inside the primary shear band we can observe the high localization 
of the temperature which reaches T

max 
≈ 1400°C avery where inside  

the shear band except in some highly deformed and damaged elements where the it 
reaches the melting temperature. Also, we can observe the high localization of the 
accumulated viscoplastic strain of around p

max 
≈ 400% evry where inside the  

shear band except in some points where it reaches p
max 
≈ 500% (Fig. 2d). Similarly, the 

accumulated viscoplastic strain rate localization reaches  
p&max ≈ 2.5 10

+5 

s
-1

. However in some points located at the beginning and the end of the 
primary shear band the maximum accumulated viscoplastic strain rate reaches p&max ≈ 

6.7 10
+5 

s
-1 

.  

As shown by Fig. 2f, the damage reaches its critical value at the external end of the 
primary shear band leading to the initiation of a macroscopic crack which propagates 
along the shear band down in the direction of the tool tip. However, a second crack 
initiation seems to take place at the middle of the primary shear band where the damage 
grows more rapidly than elsewhere. This is confirmed by the distribution of the 
equivalent stress showing a zero stress at the incipient of the macroscopic crack (Fig 
2b). All these results seem very close to the experimental observation which can be 
found in [16].  

4. CONCLUSION  

An elasto-visco-plastic-damage model accounting for non linear isotropic and 
kinematic hardening, the temperature and the ductile damage effects is presented from 
both theoretical and numerical aspects. This model is shown to be efficient to predict 
the chip formation and segmentation including the high localization of the 



termomechanical fields inside the primary shear band. These encouraging results allow 
the prediction of the serrated chip shape as well as its fragmentation. This work is under 
progress in order to generalize this adaptive procedure to the 3D metal cutting 
simulations.  
5. REFERENCES  

1 Molinari A., Musquar C., Sutter G., “Adiabatic shear banding in high speed 
machining of Ti–6Al–4V: experiments and modelling”, International Journal of 
Plasticity, vol. 18, 2002, pp. 443–459.  
2 Ceretti E., Fallboehmer P., Wu W.T., Altan T., ‘’Simulation of high speed 
milling: application of 2D FEM to chip formation in orthogonal cutting’’, ERC NSM, 
Ohio State University, 1995.  
3 Kim J.D., Marinov V.R., Kim D.S., ‘’Built-up edge analysis of orthogonal 
cutting by the visco-plastic finite element method’’, J. Mat. Proc. Tech., Vol. 71, 1997, 
pp. 367–372.  
4 Firas A., ‘’Modélisation et simulation thermomécaniques de la coupe des 
métaux’’, Thèse de doctorat, 2001, ENSAM, Paris.  
5 Fourment L., Bouchard P.O., ‘’Numerical simulation of chip formation and 
crack propagation during non-steady cutting processes’’, Int. J. Forming processes 
(Modeling of Machining Operations) 3(1-2), 2000, pp. 59–76.  
6 Elhraiech, A., "Simulation numérique de la coupe orthogonale : Application à 
l’alliage d’aluminium AS7U3G.T5", DEA, 2003, Université de Technologie de Troyes.  
7 Lestriez P., ‘’Modélisation numérique du couplage thermomécanique-
endommagement en transformations finies, Application à la mise en forme’’, Thèse de 
doctorat, 2003, UTT, Troyes.  
8 Pantalé O., Bacaria J.L., Dalverny O., Rakotomalala R., Caperaa S., “2D and 
3D numerical models of metal cutting with damage effects”, Comput. Methods Appl. 
Mech. Engrg, 2004, pp. 4383-4399.  
9 Movahhedy M., Gadala, M.S., Altintas Y., “Simulation of the orthogonal metal 
cutting process using an arbitrary Lagrangian-Eulerian Finite-element method” J. 
Materials Processing Technology, vol. 103, 2000, pp. 267-275.  
10 Saanouni K., Forster C., Benhatira F., “On the anelastic flow with damage”, Int. 
J. of Damage Mechanics”, vol. 3, 1994, pp. 141-169.  
11 Saanouni K., Nesnas K., Hammi Y., “Damage modelling in metal forming 
processes”, Int. J. of Damage Mechanics, vol. 9, n° 3, 2000, pp. 196-240.  
12 SaanouniK., Cherouat A., Hammi Y., “Numerical aspects of finite 
elastoplasticity with damage for metal forming”, Europeen Journal of Finite Elements, 
vol. 10, n° 2-3-4, 2001, pp. 327-351.  
 13. SaanouniK., Chaboche J.L., “Computational Damage Mechanics. 
Application to Metal Forming”, Chapter 7 of the Volume 3 : “Numerical and 
Computational methods” (Editors: R. de Borst, H. A. Mang), in “Comprehencive 
Structural Integrity”, Edited by I. Milne, R.O. Ritchie and  
 B. Karihaloo, ISBN: 0-08-043749-4, 2003.  
13 Lemaitre J., and Chaboche J.L., Mécanique des Matériaux Solides, Dunod, 
1985.  
14 Lemaitre, J. , A Course of Damage Mechanics, Springer Verlag, 1992.  
15 Mabrouki T., Rigal J. F., “A contribution to a qualitative understanding of thermo-
mechanical effects during chip formation in hard turning”, J. Materials processing technology, 
Vol. 176, 2006.  
16 BadreddineH., ‘’Elastoplasticité anisotrope endommageable en grandes 



déformations : aspect théoriques, numériques et applications’’, Thèse de doctorat, 2006, 
UTT, Troyes.  
17 Rassineux A., “An automatic mesh generator for planar domains”, StruCome 
(1991), pp. 519-531.  
18 Labergere C., Rassineux A., Saanouni K., “Improving numerical simulation of 
metal forming processes using adaptive remeshing technique”, 11th ESAFORM2008 
conference on material forming. Lyon, France.23, 24 and 25 april 2008, CD 
Proceedings.  
19 Limido J., Espinosa C., Salaun M., Lacome J.L. “A new approach of high speed cutting 
modelling: SPH method”, journal de physique IV, Vol. 134, 2006, pp. 1195-1200.  
20 Limido J., Espinosa C., Salaun M., Lacome J.L. “SPH method applied to high speed 
cutting modelling”, international journal mechanical sciences, Vol. 49, 2007, pp. 898-908.  
21 Komvopoulos K., Erpenbeck S.A., “Finite element modelling of orthogonal metal 
cutting”, Trans.ASME J. Eng.For. Ind, Vol. 113, 1991, pp. 253-267.  
22 Dirikolu M.H., Childs T.H.C., Maekawa K., “Finite element simulation of chip flow in 
metal machining”, international journal mechanical sciences, 2001, pp. 2699-2713.  
23 Ceretti E., Lucchi M., Altan T., “FEM simulation of orthogonal cutting: serrated chip 
formation”, J. Mater. Process., 1999, pp. 17-26.  
24 Owen D.R.J., Vaz M., “Computational Techniques applied to high-speed machining 
under adiabatic strain localisation conditions”, Computer methods in Applied Mechanics and 
Engineering, Vol. 171 1999, pp. 445-461.  
25 Lin Z.C., Lin Y.Y, “A study of oblique cutting for different low cutting speeds”, J. 
Materials Processing Technology, 2001, pp. 313-325.  
26 Baker M., Rosler J. Siemers C., “A finite element model of high speed metal cutting 
with adiabatic shearing”, Computers & Structures, Vol. 80 2002, pp. 495 
 

513.  
 


