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Abstract

Prediction of ductile fracture in structural metallic materials requires some
representation of microstructural effects, including the plastic anisotropy
that is associated with initial or induced polycrystalline textures and the mi-
croscopic processes of void growth and coalescence. With the objectiv
of characterizing existing continuum models, we present a finite-element
study of cylindrical unit cells, consisting of spheroidal voids embedded in
an orthotropic Hill matrix, subjected to proportional loading paths. Two-
dimensional axisymmetric calculations are employed for the case of trans-
verse isotropy and axisymmetric loading about the void axis. The effective
cell model responses are compared with predictions from an extended mod
of anisotropic void growth, which is the subject of an accompanying paper

1 Introduction

This paper is concerned with damage-induced cracking tbengially occurs
when large plastic deformations are involved, such as imhi@tming operations.
In structural materials, ductile fracture initiates at@®t-phase particles due to
the nucleation of voids, which subsequently grow to coaese [1]. The material
then goes from a state of diffuse damage to a state wherehddirst time, one
or more macroscopic cracks have initiated. Fig. 1 illusgahe key physical
processes involved. Void growth is tightly connected tormmatlasticity and is
weakly dependent upon the spatial distribution of voids.e Tdtter is a direct
consequence of the distribution of particles from whichbals initiate in the
first place. However, void coalescence is a collective phemwn and is strongly
affected by void distribution [3]. These basic mechanisinduztile fracture are
now well established [1].

From the elementary micromechanisms described in Fig. dpéars that, phys-
ically, void growth and coalescence are but an expressioredfin modes of
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Figure 1: Top: Elementary microscopic mechanisms of ductile damageMiddle: Ef-
fects of void distribution and void rotation on coalescence; BottomNormal “zigzag”
vs. shear-like fracture. All but bottom right micrograph are adapted from [2].

plastic deformation of the surrounding material. Becausagdneric micromech-
anisms of ductile damage are well known, the phenomenomaigtiends itself
to be treated by means of homogenization theory. The idaaldwork for mod-
eling ductile fracture is one that has a good representatigriastic deforma-
tion, e.g. polycrystalline model for metals and alloys, tamed with the ability
to predict void nucleation, growth and coalescence. Thedy@mization prob-
lem is unfortunately not tractable analytically with togbdsticated a plasticity
model for the matrix. In fact, this has led to the famous Gonrswdel [4] and
subsequent generalizations [5, 6]. The Gurson micromechas based on the
Von Mises plasticity model with no hardening. It has proddefoundation for
an attractive computational methodology for modeling antuation of ductile
fracture [7, 8]. However, under the large plastic defororadithat precede frac-
ture, the basic representative volume element itself @gl\rhis microstructural
evolution leads to induced anisotropy. To account for tx$ensions of the Gur-
son model were developed in recent years to incorporatesiage effects [5, 9]



and plastic anisotropy of the matrix material [6]. In adafiti micromechanical
unit-cell calculations [3,10,11] have also documenteceffect of void shape and
distribution on void coalescence. This has motivated theldpment of improved
coalescence models [10, 12-14].

Based on the above extensions of the Gurson model, Benzergeoamdrkers
[2, 15, 16] introduced a new ductile fracture computatiamathodology, which
accounts for certain types of initial and induced anisotrdfe fundamental hy-
pothesis of their approach is that the microstructure, ddfiat an appropriate
scale, and its evolution play a major role in determiningtifieiclamage accumu-
lation. This hypothesis has already been tested with someess in the context
of high strength steels [15,16]. Their approach, howevas based on a heuristic
combination of void shape and plastic anisotropy effectghis paper, we show
the limits of such heuristics and investigate the coupliageen void shape and
plastic anisotropy effects by means of direct finite eleneetitcalculations of the
type pioneered by Koplik and Needleman [3]; also see [6, 1], By the same
account, we demonstrate the need for improved models ofleldicicture and
advocate one such model that was recently developed by thera|17, 18].

2 \Voided Cell Calculations

2.1 Principle and Setup

Assume a periodic or regular distribution of spheroidabigassharing a common
axis. This entails no loss of generality since void growthnsensitive to the
spatial distribution of cavities [3, 13]. Hence, the ca#tidns are based on the
concept of a unit-cell containing a single void (Fig. 2) aabelrated upon in [8].
The initial void volume fractionf,, is fixed to 0.001 while the initial void aspect
ratio, wy, is varied between 1/2 and 2. The matrix is taken to be elalststic with
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Figure 2: Finite element meshes used in the axisymmetric calculations) prolate
void (wg = 2); (b) spherical void (wy = 1); and (c) oblate void @y = 1/2). Initial
porosity is fy = 0.001 in all three cases.



elastic constant® = 210 GPa and’ = 0.3. The plasticity model is defined by a
guadratic Hill criterion with associated flow rule and poviaer hardening (with
exponent 0.1). Invariance of material flow properties alaubxis is assumed.
In that case, the yield criterion is completely defined byéhindependent Hill
coefficients and the elastic limit in a given direction, say Three materials are
investigated, Table 1. Axisymmetric loadings are congdeawrith a major axial

Name hq ho hs hy hs he

Isotropic 1.000 1.000 1.000 1.000 1.000 1.000
Material i) 1.000 1.000 1.000 3.667 3.667 1.000
Material (i) 1.000 1.000 1.000 0.500 0.500 1.000

Table 1. Material anisotropy parameters used in the conipnta

stress. Therefore, there are three different axes of symrassociated with the
void, the material and the loading. Attention is restridi@the simplest, yet most
practical, case where all three axes are aligned so thatraristric calculations
can be used.

The object-oriented finite element (FE) code ZeBuLoN [19]nmgp®yed using a
Lagrangian formulation of the field equations. Fig. 2 showesEE meshes used,
which consist of sub-integrated quadratic quadrilatelehents. Special bound-
ary conditions are formulated such that the ratiof net axial stressy.. ., to net
lateral stressy,,,, remains constant throughout the calculation. Stressidtity

is measured by the ratib of the mean normal stress,,,, to the equivalent stress
Y., given by:

Sm 12041
Y. 3190

1
z:e - |Zzz - er’; 2m = g(zzz + 221“1“)7 T = (1)
A macroscopic effective strairfy,, is defined work-conjugate witi.. A Riks
algorithm [20] is used to integrate the nonlinear constisuéquations in order to
keep the stress ratth and hencd’, constant. Herd = 1 in all calculations.

2.2 Results

First, consider the case of spheroidal voids embedded isaropic matrix. The
corresponding effective stress versus strain responseoarpared in Fig. 3 with
that of an initially isotropic solid#, = 1 and isotropic matrix). Each response
depicts the basic phenomenology of void growth to coaleseerin a typical
calculation, the stress drop coincides with the onset af goalescence, which is
accompanied by accelerated lateral void growth. The resuFig. 3 demonstrate
the effect of initial void shape on void growth rates, in kiegpwith previous
studies [10].
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Figure 3: Effect of initial void aspect ratio, wy, on (a) effective stress—strain response;
and (b) evolution of porosity, for an isotropic matrix.

Next, consider the case of spherical voids in a Hill matrik.nrAaterial parameters
are kept fixed except the Hill anisotropy factors that chiaréze plastic flow of the
matrix material. This is the case treated by Benzerga and Bg6fexcept that
the results here include the stage of void coalescence.€Buts in Fig. 4 clearly
show the drastic effect of plastic anisotropy on the oveesponse of the unit cell.
The macroscopic effective stress, is normalized by, the initial yield stress
of the matrix along the-axis. Although neglected in nearly all ductile fracture
analyses, the effect of plastic anisotropy on void growtk ra more substantial
than that of void shape considering realistic ranges fomtlagerial parameters.
This result is not surprising: as noted in the introductimd growth is merely
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Figure 4: Effect of material anisotropy on (a) stress—strain reponse; and (b) evolu-

tion of porosity, for an initially spherical void.

e
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the expression of plastic deformation of the matrix; theraa internal pressure
within the voids. Therefore, it is naturally expected thHa ease, or difficulty,
with which plastic flow occurs in the matrix will affect the idogrowth process.
The results in Fig. 4 provide a quantification of such an etqueeffect.
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Finally, consider the combined effect of plastic anisoyremd void shape, i.e.,
spheroidal voids embedded in a Hill matrix. The result catobedly unexpected,
as illustrated in Fig. 5. In material (i) (representativeatiminum alloys) the
effect of void shape is retained, though less than in theapat case; compare to
Fig. 3. However, in material (iii) (which is representatioka zirconium alloy),
the effect of void shape essentially disappears, at leabinvihe range ofw,
considered here. The first conclusion is that the combintegtte not a simple
superposition of separate effects, as tacitly assumeeelaylBenzerga et al. [16].
Perhaps, the most important conclusion from Fig. 5 is thaffitist-order effect
that clearly remains is that of plastic anisotropy: whenghbeosity has reached
ten times its initial value (i.e. whefi = 0.01) the difference in effective strain
between the two materials, averaged over the set of values foonsidered here,
is greater than 0.8; compare to a difference=di.2 induced by changes i, in
the case of an isotropic matrix.
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Figure 5: Combined effect of material anisotropy and void shape olfa) stress—strain
response; and (b) evolution of porosity, for two different anisotopic matrices.

In examining the way in which plastic flow develops in the rixatthe effect of
plastic anisotropy is found to be even more subtle than dsedi above. Fig. 6
shows contours of effective plastic strain at the same nsaoguc effective strain
E. = 0.45. The contours correspond to the calculations shown in Figlt4
can be seen that the void in material (i) develops into a jpecehape caused
by the formation of a shear band with intense plastic deftionaRecall that the
calculation is axisymmetric, which means that a cone oflined deformation has
formed. This type of behavior is usually precluded undesyximetric loadings
[21] but seems to be promoted by plastic flow anisotropy ofesspecific kind.
In this connection, two observations are worth making. Ograge the initially
spherical void elongates more rapidly in material (i) (Féga)); yet that is the
material with lowest ductility (Fig. 4). This is in contrasith existing void growth
models [2, 5, 10], which would predict greater ductility imeaterial with most
elongated voids. Moreover, while void-coalescence octnaugh localization
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of plastic deformation in a ligament perpendicular to thgantxaction (so-called
internal necking mode) in material (iii) and the isotropiaterial (Figs. 6(b) and
(c)), the behavior is totally different in material (i) wieevoid-coalescence tends
to occur along an inclined band.
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(b) Isotropic (c) Material (iii)
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Figure 6: Contours of effective plastic strain in deformed configuations at £, =
0.45 for (a) Material (i); (b) isotropic matrix; and (c) Material (iii). Void is initially
spherical in all.

3 Extended Void Growth Model

3.1 Synopsis

In a companion paper [18], a micromechanics-based modebidf growth in
anisotropic materials is developed. Below is a streamlineggntation of the
resulting constitutive equations. The effective yieldarion is derived as [18]:
3X -H:X >: X
2 o2

m

29(g+1)(g+ f) cosh ( ) (g1 2 =0 )

Om

Here,H is an effective anisotropy tensor defined by
H=J+7X®Q):h:(J+7Q®X) 3)

whereh is Hill’'s orthotropy tensor for the matrix in deviatoricrgss space [6]
and] is the deviatoric projection tensor definedby= 1 — 31 ® 1 wherel and



1 are the fourth- and second-order identity tensors, resedct Also, X andQ
are second-order tensors tied to the current void oriemtdnty

X = 0{2(61 e t+te® 62) + (1 — 2052)83 X es (4)

1
Qz—ﬁ(e1®e1+e2®eg)+e3®e3 (5)

where g1, e5, €3) Is an orthonormal Cartesian frame wihaligned with the void
axis ande, e; chosen arbitrarily. Finally(', n, x, g anda, are scalar-valued func-
tions of the microstructural variables, namely the poyogitthe void aspect ratio,
w, and three scalar anisotropy factais/; andh,, which are linear functions of
the components oh. The functional forms of all the scalar parameters in the
model are provided in [18].

Criterion (2) is supplemented with an associated flow rule aheuristic exten-
sion to hardening. With,,, the matrix yield stress in a reference direction, denote
the matrix effective plastic strain 3¥),; then the evolution of?, is given by [4]

(1= f)omel, =% : D? (6)
whereD? is the plastic deformation rate. The heuristic parametes taken to
be a function of the current void aspect ratio following [5].

2w
—_— 7
7w (7)

whereg; is the value ofq for a spherical void, taken to be equal 1@ in the
computations presented here.
The evolution equations for the microstructural variabfeandw, are given by

q:1+(QS_1)

f=(-HuD), = 2D - DY - Dy ®)

whereD" is the average deformation rate of the void. The latter isrieihed as
a function of the macroscopic plastic deformation r&é, using the relationship
developed by Ponte Castaneda and Zaidman [22]:

D'=A:D?, A=[1—(1—f)S]? 9)

whereA is a ‘concentration’ tensor for the deformation rate &nd the Eshelby
tensor for a spheroidal void in an infinite linear-viscoustrigpic matrix [23]. An
equation for the spin rate is also derived in [18] but is nt#vant here.

3.2 Toward Validation

The above constitutive equations are integrated for inghesess paths that mimic
those used in the unit-cell calculations. Integration rsied out using a backward
Euler scheme. Fig. 7 shows a comparison between model an@lE&@ations.
The correspondence is very good given that the only heuasiustment resides
in the g parameter, which does not depend on plastic anisotropy.
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Figure 7: Comparison of unit-cell responses (solid curves) and mad predictions
(dashed curves) in the pre-coalescence regime for (a) the stsestrain response; and
(b) the evolution of porosity, for wy = 1 and three matrix materials.

4 Closure

Micromechanical finite-element calculations have beenaout to investigate
the coupling between micro-scale plastic anisotropy and goowth. State-of-
the-art models of void growth fail to capture the basic cougpl Comparison of
the FE calculations with an extended model of void growtkengly developed
by the authors, shows promising results both in terms ottffe response and
microstructure evolution.
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