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Abstract

Prediction of ductile fracture in structural metallic materials requires some
representation of microstructural effects, including the plastic anisotropy
that is associated with initial or induced polycrystalline textures and the mi-
croscopic processes of void growth and coalescence. With the objective
of characterizing existing continuum models, we present a finite-element
study of cylindrical unit cells, consisting of spheroidal voids embedded in
an orthotropic Hill matrix, subjected to proportional loading paths. Two-
dimensional axisymmetric calculations are employed for the case of trans-
verse isotropy and axisymmetric loading about the void axis. The effective
cell model responses are compared with predictions from an extended model
of anisotropic void growth, which is the subject of an accompanying paper.

1 Introduction

This paper is concerned with damage-induced cracking that potentially occurs
when large plastic deformations are involved, such as in metal forming operations.
In structural materials, ductile fracture initiates at second-phase particles due to
the nucleation of voids, which subsequently grow to coalescence [1]. The material
then goes from a state of diffuse damage to a state where, for the first time, one
or more macroscopic cracks have initiated. Fig. 1 illustrates the key physical
processes involved. Void growth is tightly connected to matrix plasticity and is
weakly dependent upon the spatial distribution of voids. The latter is a direct
consequence of the distribution of particles from which thevoids initiate in the
first place. However, void coalescence is a collective phenomenon and is strongly
affected by void distribution [3]. These basic mechanisms of ductile fracture are
now well established [1].

From the elementary micromechanisms described in Fig. 1 it appears that, phys-
ically, void growth and coalescence are but an expression ofcertain modes of
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Figure 1: Top: Elementary microscopic mechanisms of ductile damage.Middle: Ef-
fects of void distribution and void rotation on coalescence; Bottom: Normal “zigzag”
vs. shear-like fracture. All but bottom right micrograph are adapted from [2].

plastic deformation of the surrounding material. Because the generic micromech-
anisms of ductile damage are well known, the phenomenon naturally lends itself
to be treated by means of homogenization theory. The ideal framework for mod-
eling ductile fracture is one that has a good representationof plastic deforma-
tion, e.g. polycrystalline model for metals and alloys, combined with the ability
to predict void nucleation, growth and coalescence. The homogenization prob-
lem is unfortunately not tractable analytically with too sophisticated a plasticity
model for the matrix. In fact, this has led to the famous Gurson model [4] and
subsequent generalizations [5, 6]. The Gurson micromechanics is based on the
Von Mises plasticity model with no hardening. It has provided a foundation for
an attractive computational methodology for modeling and simulation of ductile
fracture [7, 8]. However, under the large plastic deformations that precede frac-
ture, the basic representative volume element itself evolves. This microstructural
evolution leads to induced anisotropy. To account for this,extensions of the Gur-
son model were developed in recent years to incorporate voidshape effects [5, 9]

2



and plastic anisotropy of the matrix material [6]. In addition, micromechanical
unit-cell calculations [3,10,11] have also documented theeffect of void shape and
distribution on void coalescence. This has motivated the development of improved
coalescence models [10,12–14].

Based on the above extensions of the Gurson model, Benzerga andco-workers
[2, 15, 16] introduced a new ductile fracture computationalmethodology, which
accounts for certain types of initial and induced anisotropy. The fundamental hy-
pothesis of their approach is that the microstructure, defined at an appropriate
scale, and its evolution play a major role in determining ductile damage accumu-
lation. This hypothesis has already been tested with some success in the context
of high strength steels [15,16]. Their approach, however, was based on a heuristic
combination of void shape and plastic anisotropy effects. In this paper, we show
the limits of such heuristics and investigate the coupling between void shape and
plastic anisotropy effects by means of direct finite elementcell calculations of the
type pioneered by Koplik and Needleman [3]; also see [6, 10, 11]. By the same
account, we demonstrate the need for improved models of ductile fracture and
advocate one such model that was recently developed by the authors [17,18].

2 Voided Cell Calculations

2.1 Principle and Setup

Assume a periodic or regular distribution of spheroidal voids sharing a common
axis. This entails no loss of generality since void growth isinsensitive to the
spatial distribution of cavities [3, 13]. Hence, the calculations are based on the
concept of a unit-cell containing a single void (Fig. 2) as elaborated upon in [8].
The initial void volume fraction,f0, is fixed to 0.001 while the initial void aspect
ratio,w0, is varied between 1/2 and 2. The matrix is taken to be elasto-plastic with

(a) (b) (c)

Figure 2: Finite element meshes used in the axisymmetric calculations (a) prolate
void (w0 = 2); (b) spherical void (w0 = 1); and (c) oblate void (w0 = 1/2). Initial
porosity is f0 = 0.001 in all three cases.
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elastic constantsE = 210 GPa andν = 0.3. The plasticity model is defined by a
quadratic Hill criterion with associated flow rule and power-law hardening (with
exponent 0.1). Invariance of material flow properties aboutan axis is assumed.
In that case, the yield criterion is completely defined by three independent Hill
coefficients and the elastic limit in a given direction, sayσ1. Three materials are
investigated, Table 1. Axisymmetric loadings are considered with a major axial

Name h1 h2 h3 h4 h5 h6

Isotropic 1.000 1.000 1.000 1.000 1.000 1.000
Material (i) 1.000 1.000 1.000 3.667 3.667 1.000
Material (iii) 1.000 1.000 1.000 0.500 0.500 1.000

Table 1: Material anisotropy parameters used in the computations.

stress. Therefore, there are three different axes of symmetry associated with the
void, the material and the loading. Attention is restrictedto the simplest, yet most
practical, case where all three axes are aligned so that axisymmetric calculations
can be used.

The object-oriented finite element (FE) code ZeBuLoN [19] is employed using a
Lagrangian formulation of the field equations. Fig. 2 shows the FE meshes used,
which consist of sub-integrated quadratic quadrilateral elements. Special bound-
ary conditions are formulated such that the ratioθ of net axial stress,Σzz, to net
lateral stress,Σrr, remains constant throughout the calculation. Stress triaxiality
is measured by the ratioT of the mean normal stress,Σm, to the equivalent stress
Σe, given by:

Σe = |Σzz − Σrr|, Σm =
1

3
(Σzz + 2Σrr), T =

Σm

Σe

=
1

3

2θ + 1

|1 − θ|
(1)

A macroscopic effective strain,Ee, is defined work-conjugate withΣe. A Riks
algorithm [20] is used to integrate the nonlinear constitutive equations in order to
keep the stress ratioθ, and henceT , constant. HereT = 1 in all calculations.

2.2 Results

First, consider the case of spheroidal voids embedded in an isotropic matrix. The
corresponding effective stress versus strain responses are compared in Fig. 3 with
that of an initially isotropic solid (w0 = 1 and isotropic matrix). Each response
depicts the basic phenomenology of void growth to coalescence. In a typical
calculation, the stress drop coincides with the onset of void coalescence, which is
accompanied by accelerated lateral void growth. The results in Fig. 3 demonstrate
the effect of initial void shape on void growth rates, in keeping with previous
studies [10].
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Figure 3: Effect of initial void aspect ratio, w0, on (a) effective stress–strain response;
and (b) evolution of porosity, for an isotropic matrix.

Next, consider the case of spherical voids in a Hill matrix. All material parameters
are kept fixed except the Hill anisotropy factors that characterize plastic flow of the
matrix material. This is the case treated by Benzerga and Besson [6] except that
the results here include the stage of void coalescence. The results in Fig. 4 clearly
show the drastic effect of plastic anisotropy on the overallresponse of the unit cell.
The macroscopic effective stress,Σe is normalized byσ1, the initial yield stress
of the matrix along thez-axis. Although neglected in nearly all ductile fracture
analyses, the effect of plastic anisotropy on void growth rate is more substantial
than that of void shape considering realistic ranges for thematerial parameters.
This result is not surprising: as noted in the introduction,void growth is merely
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Figure 4: Effect of material anisotropy on (a) stress–strain response; and (b) evolu-
tion of porosity, for an initially spherical void.

the expression of plastic deformation of the matrix; there is no internal pressure
within the voids. Therefore, it is naturally expected that the ease, or difficulty,
with which plastic flow occurs in the matrix will affect the void growth process.
The results in Fig. 4 provide a quantification of such an expected effect.
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Finally, consider the combined effect of plastic anisotropy and void shape, i.e.,
spheroidal voids embedded in a Hill matrix. The result can betotally unexpected,
as illustrated in Fig. 5. In material (i) (representative ofaluminum alloys) the
effect of void shape is retained, though less than in the isotropic case; compare to
Fig. 3. However, in material (iii) (which is representativeof a zirconium alloy),
the effect of void shape essentially disappears, at least within the range ofw0

considered here. The first conclusion is that the combined effect is not a simple
superposition of separate effects, as tacitly assumed earlier by Benzerga et al. [16].
Perhaps, the most important conclusion from Fig. 5 is that the first-order effect
that clearly remains is that of plastic anisotropy: when theporosity has reached
ten times its initial value (i.e. whenf = 0.01) the difference in effective strain
between the two materials, averaged over the set of values for w0 considered here,
is greater than 0.8; compare to a difference of≈ 0.2 induced by changes inw0 in
the case of an isotropic matrix.
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Figure 5: Combined effect of material anisotropy and void shape on(a) stress–strain
response; and (b) evolution of porosity, for two different anisotropic matrices.

In examining the way in which plastic flow develops in the matrix, the effect of
plastic anisotropy is found to be even more subtle than discussed above. Fig. 6
shows contours of effective plastic strain at the same macroscopic effective strain
Ee = 0.45. The contours correspond to the calculations shown in Fig. 4. It
can be seen that the void in material (i) develops into a peculiar shape caused
by the formation of a shear band with intense plastic deformation. Recall that the
calculation is axisymmetric, which means that a cone of localized deformation has
formed. This type of behavior is usually precluded under axisymmetric loadings
[21] but seems to be promoted by plastic flow anisotropy of some specific kind.
In this connection, two observations are worth making. On average the initially
spherical void elongates more rapidly in material (i) (Fig.6(a)); yet that is the
material with lowest ductility (Fig. 4). This is in contrastwith existing void growth
models [2, 5, 10], which would predict greater ductility in amaterial with most
elongated voids. Moreover, while void-coalescence occursthrough localization
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of plastic deformation in a ligament perpendicular to the major traction (so-called
internal necking mode) in material (iii) and the isotropic material (Figs. 6(b) and
(c)), the behavior is totally different in material (i) where void-coalescence tends
to occur along an inclined band.

(a) Material (i) (b) Isotropic (c) Material (iii)

Figure 6: Contours of effective plastic strain in deformed configurations at Ee =

0.45 for (a) Material (i); (b) isotropic matrix; and (c) Material (iii). Void is initially
spherical in all.

3 Extended Void Growth Model

3.1 Synopsis

In a companion paper [18], a micromechanics-based model of void growth in
anisotropic materials is developed. Below is a streamlined presentation of the
resulting constitutive equations. The effective yield criterion is derived as [18]:

C
3

2

Σ : H : Σ

σ2
m

+2q(g+1)(g+f) cosh

(

κ
Σ : X

σm

)

−(g+1)2−q2(g+f)2 = 0 (2)

Here,H is an effective anisotropy tensor defined by

H ≡ (J + ηX ⊗ Q) : h : (J + ηQ ⊗ X) (3)

whereh is Hill’s orthotropy tensor for the matrix in deviatoric-stress space [6]
andJ is the deviatoric projection tensor defined byJ ≡ 1− 1

3
1 ⊗ 1 where1 and
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1 are the fourth- and second-order identity tensors, respectively. Also, X andQ

are second-order tensors tied to the current void orientation by

X ≡ α2(e1 ⊗ e1 + e2 ⊗ e2) + (1 − 2α2)e3 ⊗ e3 (4)

Q ≡ −
1

2
(e1 ⊗ e1 + e2 ⊗ e2) + e3 ⊗ e3 (5)

where (e1, e2, e3) is an orthonormal Cartesian frame withe3 aligned with the void
axis ande1, e2 chosen arbitrarily. Finally,C, η, κ, g andα2 are scalar-valued func-
tions of the microstructural variables, namely the porosity, f , the void aspect ratio,
w, and three scalar anisotropy factors,h, ht andha, which are linear functions of
the components ofh. The functional forms of all the scalar parameters in the
model are provided in [18].

Criterion (2) is supplemented with an associated flow rule anda heuristic exten-
sion to hardening. Withσm the matrix yield stress in a reference direction, denote
the matrix effective plastic strain bȳǫp

m; then the evolution of̄ǫp
m is given by [4]

(1 − f)σṁ̄ǫp
m = Σ : Dp (6)

whereDp is the plastic deformation rate. The heuristic parameter,q, is taken to
be a function of the current void aspect ratio following [5].

q = 1 + (qs − 1)
2w

1 + w2
(7)

whereqs is the value ofq for a spherical void, taken to be equal to1.6 in the
computations presented here.
The evolution equations for the microstructural variables, f andw, are given by

ḟ = (1 − f) tr(Dp), ẇ =
1

2
(2Dv

33
− Dv

11
− Dv

22
)w (8)

whereDv is the average deformation rate of the void. The latter is determined as
a function of the macroscopic plastic deformation rate,Dp, using the relationship
developed by Ponte Castaneda and Zaidman [22]:

Dv = A : Dp, A ≡ [1− (1 − f)S]−1 (9)

whereA is a ‘concentration’ tensor for the deformation rate andS is the Eshelby
tensor for a spheroidal void in an infinite linear-viscous isotropic matrix [23]. An
equation for the spin rate is also derived in [18] but is not relevant here.

3.2 Toward Validation

The above constitutive equations are integrated for imposed stress paths that mimic
those used in the unit-cell calculations. Integration is carried out using a backward
Euler scheme. Fig. 7 shows a comparison between model and FE calculations.
The correspondence is very good given that the only heuristic adjustment resides
in theq parameter, which does not depend on plastic anisotropy.
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Figure 7: Comparison of unit-cell responses (solid curves) and model predictions
(dashed curves) in the pre-coalescence regime for (a) the stress–strain response; and
(b) the evolution of porosity, for w0 = 1 and three matrix materials.

4 Closure

Micromechanical finite-element calculations have been carried out to investigate
the coupling between micro-scale plastic anisotropy and void growth. State-of-
the-art models of void growth fail to capture the basic coupling. Comparison of
the FE calculations with an extended model of void growth, recently developed
by the authors, shows promising results both in terms of effective response and
microstructure evolution.
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