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1. Introduction 
 
Imperfections in microstructures such as voids, cracks and inhomogeneities cause 
large changes in overall mechanical behavior of the structures.  Determination of 
stress fields inside/outside single and some inhomogeneities is of great 
importance to understanding of fracture, fatigue strength and failure behavior of 
the heterogeneous materials.  Classical research was reported in the early 1960’s 
by Eshelby [1-3], with many corresponding investigations [4-11].  Asaro and 
Barnett [12] showed that when the eigenstrain inside an ellipsoidal inclusion is of 
the form of a polynomial of an arbitrary order in Cartesian coordinates, an 
induced strain field in the inclusion is also characterized by a polynomial of the 
same order.  The result for the polynomial eigenstrains is referred to as Eshellby’s 
polynomial conservation theorem [13]. 
 
The present paper presents an analytic solution for the induced stress field by 
quadratic distribution of eigenstrains in orthotropic materials with complex roots.  
Based on principle of minimum potential energy of the elastic inhomogeneity-
matrix system, a closed-form solution is obtained by determining the coefficients 
of some quadratic functions in the coordinates of the points of the inhomogeneity.  
The results reflect the coupling effect of the zero and second order terms in the 
polynomial eigenstrains on the elastic field. 
 
2. Fundamental governing equations 
 
For an orthotropic medium in which two in-plane x- and y- directions coincide 
with the principal directions of elasticity, the constitutive and geometric relations 
under plane strain condition are expressed as 
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are elements of reduced compliance matrix for the plane strain condition.  
Elements of the compliance matrix, i j j ia a= , can be determined in terms of the 
material constants such that 
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where , 1,2,3=iE i  is the elastic modulus in the x, y and z directions 
respectively.  ( ; 1,2,3)i jv i j j≠ =  which is the Poisson’s ratio, is the negative 
of the transverse strain in the j-direction over the strain in the i-direction when 
stress is applied in the i- direction, and 12G  is the shear modulus in the xy-plane.  
The stress and displacement components in Eq.(1) can be written by means of two 
undetermined complex functions 1 1 2 2( ) , ( )z zφ φ  and their derivatives as follows 
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1 1 1 2 2 2( , ) 2Re ( ) ( )x x y z zσ μ φ μ φ′ ′⎡ ⎤= +⎣ ⎦ , 

 [ ]1 1 2 2( , ) 2Re ( ) ( )y x y z zσ φ φ′ ′= + , (4) 

 [ ]1 1 1 2 2 2( , ) 2Re ( ) ( )′ ′= − +x y x y z zτ μ φ μ φ , 
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 1 1 1 2 2 2( , ) 2Re[ ( ) ( ) ]u x y p z p zφ φ= + , 
 1 1 1 2 2 2( , ) 2Re[ ( ) ( )]v x y q z q zφ φ= + , (5) 
where 1 1= +z x yμ  and 2 2= +z x yμ .  The four complex coefficients 

1 2 1 2, , ,p p q q  are given by 

 2 2
1 11 1 12 2 11 2 12,= + = +p pβ μ β β μ β , 22 22

1 12 1 2 12 2
1 2

,= + = +q q
β β

β μ β μ
μ μ

, (6) 

in which 1 2,μ μ  are two characteristic parameters of the orthotropic media 
indicating the degree of anisotropy for either complex or purely imaginary 
numbers [14].  For plane stress, the corresponding governing equations are 
obtained directly by replacing the elements ijβ  with ija  for , 1,2,6=i j . 
 
3. Elastic fields and strain energy induced by eigenstrains 
 
3.1 Elastic field inside the inhomogeneity 
 
Consider an elliptic inhomogeneity with non-uniform normal and shear 
eigenstrains, ( , ) , ( , ) , ( , )x y x yx y x y x yε ε γ∗ ∗ ∗ , embedded in an infinite 
homogeneous and orthotropic linear elastic solid, the eigenstrains induce elastic 
strains in the inhomogeneity, denoted by 0 0 0( , ) , ( , ) , ( , )x y x yx y x y x yε ε γ .  The 
total strain components 1 2 12( , ) , ( , ) , ( , )x y x y x yε ε γ  are written as 
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2 y yε ε ε= + , 0 *
12 x y x yγ γ γ= + . (7) 



Specifically, the eigenstrains are assumed to be quadratic in Cartesian coordinates 
of the points of the inhomogeneity such that 
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Based on the polynomial conservation theorem [12,13], the total strains can also 
be expressed in the form of quadratic polynomials as 
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where , , , 0,1, ,5=i i iD E F i L  are 18 real unknown constants determined by the 
18 real coefficients , , , 0,1, ,5=i i ic d e i L  in Eq.(8).  Using Eq.(7), the elastic 
strains in the inhomogeneity are expressed as 
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From Eq.(1), the stress components in the inhomogeneity under plane strain 
condition can thus be derived as 
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To distinguish between the inhomgeneity from the matrix, the material constants 
and elastic fields are denoted with the superscript 0 and elastic strain energy for 
the inhomogeneity are obtained as 

 0 0 0 0 0 01 ( )
2 Ω

= + +∫∫I x x y y x y x yW dxdyε σ ε σ γ τ , (12) 

where Ω  represents the elliptic region.  Substitution of Eqs.(10) and (11) into 
Eq.(12) yields 

 2 2 4 2 2 4
0 1 2 3 4 5

1 1 1 1 1 1( )
2 4 4 8 24 8IW ab A a A b A a A a b A b Aπ= + + + + + , (13) 

in which , 0,1,...,5=iA i  are coefficients concerning the known coefficients 
, , , 0,1, ,5=i i iD E F i L .  As displacements in the inhomogeneity 0u  and 0v  are 

compatible with the total strains 1ε , 2ε  and 12γ , they can be determined as 
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By means of Eqs.(9) and (14), the displacement components are expressed as  
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and 
 4 5 32 2= +F D E , 2 0 1= −I F I  (16) 
and 1̂c  and 2ĉ  are two real constants without any effect on the stress components.  
The above resulting displacement components consist of the 18 unknown 
independent constants 0D , 0E , , 1I , 2I , 1D , 1E , 2D , 2E , 1F , 2F , 3D , 3E , 4D , 

4E , 5D , 5E , 3F , 5F  to be determined. 
 
3.2 Strain energy for the matrix 
 
For an elliptic inhomogeneity, the plane region outside the elliptic region can be 
transformed into a unit circle 1<ζ  using the mapping function 

( ) ( ) / (2 ) ( ) / 2= = + + −z a b a bω ζ ζ ζ .  On the boundary of the unit circle, 
= = ie θζ σ .  Due to the preceding mapping function, the real and imaginary parts 

of = +z x i y  are 
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respectively.  By means of the continuity condition for displacement at the 
interface between the inhomogeneity and matrix, 0 0,= =u u vν , combining 
Eqs.(15) with (17), the two displacement components at the interior boundary of 
the matrix can be expressed in terms of σ  as 
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where ,i iK L , 0,1,...,6=i  are coefficients concerning the above unknown 
constants.  In addition, Eq.(5) can be rewritten as 
 1 22Re[ ( ) ( )] ( )+ =p A p B uσ σ σ , 1 22Re[ ( ) ( )] ( )+ =q A q B vσ σ σ , (19) 
where ( )A σ  and ( )B σ  are two transformed equivalent quantities of 1 1( )zφ  and 

2 2( )zφ  respectively.  The functions ( )A ζ  and ( )B ζ  can be determined using 
Schwartz formula [15] as 
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where the function ( )X ζ  is holomorphic inside a unit circle Γ , and ( )Y σ  is the 
real part of ( )X ζ  on the contour of the unit circle, and 0l  is a real constant.  
Using Eqs.(18) and (19), and applying Schwartz formula (20), together with 
Cauchy’s formula, one yields 
 1 2 1 1( ) ( ) ( )+ = Ω +p A p B i lζ ζ ζ , 1 2 2 2( ) ( ) ( )+ = Ω +q A q B i lζ ζ ζ  
where 1 2,l l  are two real constants, and 
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The corresponding expressions for ( )A ζ  and ( )B ζ  are thus derived as 
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in which two constants 21 , cc ′′  have no influence on the stress components and can 
be neglected.  Consider the case for two complex roots βαμ i+=1  and 

βαμ i+−=2  )0,0( >> βα , expressions for the four constants 1 2 1 2, , ,p p q q  in 
Eq.(6) becomes [16] 
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Due to Eq.(22), ( )A σ  and ( )B σ  can be obtained as 
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in which coefficient e  is expressed as 
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Using Eq.(25), stress components c
xσ , c

yσ  and c
x yτ  in the orthotropic matrix on the 

interior boundary can finally be obtained from Eq.(4) as 
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in which functions ( )iP θ , ( )iQ θ  and ( )iT θ , 1,2,...,18i =  are omitted.  According 
to Clapeyron’s theorem, the strain energy in the matrix can be calculated by 
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in which cos( , ) / , cos( , ) /x n dy ds y n dx ds= = −  and n  is the outward unit 
normal.  Substituting Eq.(31) into Eq.(30), applying resulting Eq.(27) together 
with Eqs.(17) and (18), noting that ie θσ = ,  integration with respect to θ  results 
in analytical expressions for the strain energy for the matrix as 
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where the coefficients i jn  are again omitted. 
 
4. Determination of unknown coefficients 
 
Total strain energy of the elastic system, consisting of inhomogeneity and matrix 
is thus = +I MW W W  where IW  and MW  are expressed in Eq.(13) and (32), 
respectively.  Based on the principle of minimum potential energy, the 18 
independent unknown coefficients can be determined by solving separately the 
following four sets of equations 



 

0 1

0 2

1 2

3 4

1 2

43

2 1

35

55

0 0

0 0
0 0

0 0
, , 0 , 0

00
0 0

00

00

∂ ∂⎧ ⎧= =⎪ ⎪∂ ∂⎪ ⎪
∂⎪ ∂⎪= =⎪ ⎪∂ ∂ ⎧ ⎧∂ ∂⎪ ⎪ = =⎪ ⎪⎪ ⎪∂ ∂ ∂ ∂⎪ ⎪= =⎪ ⎪∂ ∂ ⎪ ⎪∂ ∂⎪ ⎪ = =⎨ ⎨ ⎨ ⎨∂∂ ∂ ∂⎪ ⎪ ⎪ ⎪==

⎪ ⎪ ⎪ ⎪∂∂ ∂ ∂
= =⎪ ⎪ ⎪ ⎪

∂∂ ∂ ∂⎩ ⎩⎪ ⎪ ==
⎪ ⎪ ∂∂
⎪ ⎪

∂∂⎪ ⎪ ==⎪ ⎪ ∂∂ ⎩⎩

W W
D I
W W
E I W W
W W D D
D D W W

WW E E
EE W W
WW F F
FD
WW
FE

, (33) 

The first two sets of equations in Eq.(33) result in the coefficients concerning zero 
and second order terms of x  and y  in Eq.(9) or Eq.(10) as 
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The last two sets of equations result in the coefficients concerning first order 
terms of x  and y  in Eq.(9) or Eq.(10) as 
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where specific expressions for the eight matrices 1
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remaining coefficient, 4F , concerning the term with respect to xy  in the shear 
strain can be derived using Eq.(16).  Applying the resulting analytic expressions 
for the 18 independent coefficients in Eqs.(34) and (35), the displacement, elastic 
strain and stress components inside the inhomogeneity thus have their explicit 
results given by Eq.(15), (10) and (11), respectively. 
 
5. Results of special cases 
 
The preceding resulting solutions for 18 independent coefficients can be divided 
into two groups, one is referred to both zero-order terms and quadratic terms, and 



the other corresponds to first-order terms in Eqs.(9) and (10).  The two resulting 
relations in Eq.(34) reveal that even though there are no zero-order term in the 
prescribed eigenstrains Eq.(8), i.e., 0000 === edc , the quadratic terms in Eq.(8) 
can cause the zero-order elastic strain components 0D , 0E  and 0F  in Eq.(9), 
which reflects the coupling effect of the zero and second order terms in the 
polynomial expression on the elastic fields.  In contrast, the first-order terms in 
the eigenstrains only produce corresponding elastic fields in the form of the first-
order terms, as expressed in Eq.(35), which is similar to results of Nie et al. [16]. 
 
For the special case of uniform or constant eigenstrains in isotropic media 
( 0 , 1)= =α β , 0 , 1,2,...,5= = = =i i ic d e i   and 0 , 1,2,...,5= = = =i i iD E F i  
in Eqs.(8) and (9) respectively.  The strain energy for the matrix in Eq.(32) can be 
expressed by the reduced coefficients, 0D  and 0E  and and 1I , 2I , 0 1 2= +F I I  as 

1 2= +M M MW W W , where 1
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MW  represent two parts of the strain energy 
associated with normal and shear strains respectively, such that 
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in which 1 0= Dε , 2 0= Eε , 1 1= Iγ , 2 2= Iγ  and [ ]/ 2(1 )= +G E ν , 3 4= −κ ν .  
The above results are the same as those by Jaswon and Bhargava [17], Bhargava 
and Radhakrishna [18], Willis [19] and Yang and Chou [20]. 
 
6. Stresses at the interface between inhomogeneity and matrix 
 
The normal and shear stresses in the inhomogeneity and matrix are calculated by 
Eq.(11) and Eq.(27) respectively.  For any point at the interface, using the 
transformation formulae [16], the normal stresses 0( , )c c

n nσ σ  and shear stresses 
0( , )c c

n nτ τ  at the interface between the inhomogeneity and matrix can be evaluated 
independently.  In the following numerical examples, two materials are 
considered. 
 
Firstly, for the case when both the inhomogeneity and matrix are isotropic, the 
material constants are chosen as 0 10.0= =E E G Pa , 0 0.50= =ν ν  and the two 
parameters in 1 = + iμ α β  and 2 = − + iμ α β  can be determined as 1,0 == βα .  
For different ratios of /=R b a , computational results for the stresses in GPa at a 
characteristic point ( ,0)a  at the tip of the ellipse are: 
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= = − − −
− − − +

c c
n n c c c

d d d e
σ σ

 

 0
4 4 0 3 50.506963 0.534309 1.11111 1.23459 0.0367601= = + − − −c c

ns ns c d e e eτ τ  
Results show that when the ellipse becomes shallower, the normal stress becomes 
larger in magnitude with the uniform eigenstrain 0c  but smaller with the quadratic 
terms in eigenstrains.  However, all terms in eigenstrains cause lower shear 
stresses for a narrower ellipse. 
 
For the case when the matrix is orthotropic and the inhomogeneity is isotropic, the 
material constants are such that 0 10.0=E G Pa , 0 0.25=ν , and 1 0.16=E G Pa , 

2 3.24=E G Pa , 12 0.33=v , 12 1.875=G G Pa .  The two parameters can be 
determined as 0.167=α  and 1.167=β .  For 1=R , there is 

 
0

0 3 5

0 3 5 4

2.4239 1.0476 0.3480
0.7598 0.7715 0.1370 0.1854

= = − − +

− − − +

c c
n n c c c

d d d e
σ σ  

 0
4 4 0 3 50.2651 0.5624 0.6758 0.5245 0.2272= = + − − −c c

ns ns c d e e eτ τ  
The above results show that the continuity conditions for the normal and shear 
stresses at the interface between the inhomogeneity and matrix are satisfied. 
 
7. Conclusions 
 
A closed-form solution for elastic field of an elliptic inhomogeneity with 
quadratic polynomial eigenstrains in orthotropic media is formulated.  The elastic 
energy of the inhomogeneity/matrix system is expressed in terms of 18 unknown 
real coefficients, which are analytically evaluated by means of the principle of 
minimum potential energy.  The corresponding elastic field in the inhomogeneity 
is obtained.  The resulting stress field in the inhomogeneity is verified using the 
continuity conditions for the normal and shear stresses at the interface between 
the inhomogeneity and matrix.  The resulting solution reflects the coupling effect 
of the zero and second order terms in the polynomial expressions on the elastic 
field.  The present analytic solution reduces to known results for some special 
cases. 
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