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ABSTRACT 
 
In this study, interactions between a main crack and a surrounding layer of 
crazing patterns are considered. Analysis of the stress field distribution as well as 
the energy induced during these interactions is based on the resolution of some 
differential equations along with appropriate boundary conditions and the use of a 
numerical approach. It is proven throughout this study that the crazes growth 
occurs along directions normal to the major principal stress directions and 
constitutes an important toughening mechanism. Thus, the mode I Stress Intensity 
Factor (SIF) is employed to quantify the effects of this damage on the main crack 
and the Energy Release Rate (ERR) due to the linear propagation of the main 
crack and also to the translational change in the growth of the damage. It is 
proven, herein, that crazes closer to the main crack dominate the resulting 
interaction effect and reflect an anti-shielding of the damage while a reduction 
constitutes a material toughness. 
 
KEYWORDS: Displacement, major and minor principal stress, stress intensity 
factor, energy release rate, crack, crazing patterns. 
   
1. INTRODUCTION 
 
There is sufficient experimental evidence that in most cases, a propagating crack 
is surrounded by a damage zone which often precedes the crack itself. This zone 
usually consists of slip lines or shear bands in metals, microcracks in ceramics 
and polymers, and crazes in amorphous polymers. Thus, the existence of these 
defects affects progressively the propagation of cracks already present in some 
materials. Because this damage can constitute an important toughening 
mechanism, problems dealing with crack microcracks interactions have received 
considerable research attention since they were introduced to fracture mechanics. 
As a result, a wide body of literature, on this topic, exist [1-4]. Thus, analysis of 
the distribution of surface crazes in the vicinity of a stationary edge crack in a 
polystyrene (PS) sheet in tension has shown the craze growth occurs along 
directions parallel to the minor principal stress axis. This behaviour has been 
thoroughly documented and extensively discussed in a number of papers [5-7]. 
  



2. PROBLEM FORMULATION  
 
Considering a two dimensional, linear elastic solid containing an edge crack of 
length L and a surrounding layer of crazing patterns as shown in Fig. 1. For an 
edge crack in a semi-infinite body under uniform traction, distant from and 
normal to the crack and considering Cartesian coordinates with the origin at the 
crack tip, the elastic plane stress field is given as follows [8]. 
 
 
                         σxx                                            φxx (θ) 
 
                         σyy           =      KI/(2πr)1/2        φyy(θ)        +   σ∞                           (1) 
 
                         σxy                                            φxy(θ) 
 
 
The first term of Eq. (1) expresses an asymptotic stress field near the singularity. 
The additional terms are homogeneous material stresses. 
  
 
          σxx                                        cos θ/2 (1 – sin θ/2 sin (3/2)θ ) 
 
          σyy        =   KI / (2πr) 1/2        cos θ/2 (1 + sin θ/2 sin (3/2)θ         +  σ∞           (2) 
           
          σxy                                         sin θ/2 cos θ/2 cos (3/2)θ 
 
     
where KI = 1,12(π L)1/2 σ∞ is the effective stress intensity factor at the main crack 
tip for mode I.  
 
Then, for the case of an edge crack specimen, the global stress field is given by 
the following expressions in Cartesian coordinates;  
 
 
    σxx                                      cos θ/2 ( 1 – sin θ/2 sin (3/2) θ ) 
 
   σyy       =  A.(L /r) 1/2.σ∞      cos θ/2 ( 1 +  sin θ/2 sin (3/2) θ + 1/A (r/L) 1/2       (3) 
  
   σxy                                       sin θ/2 cos θ/2 cos (3/2) θ  
 
 
where the constant A is equal to 1.12/√2 ≈ 0.8   
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                       σ∞   
  

  Figure 1: Geometry of the problem for general formulation. 

 

 

 
 
 
 
 
 
 
                
Figure 2: Schematic representation of principal stresses along the crazing patterns. 
 
 
3. DIFFERENTIAL EQUATIONS FOR PRINCIPAL STRESS 
 
According to Mohr’s theory, principal stresses are orthogonal and act on a plane 
where shear stresses vanish. Then, the following geometrical transformations are 
taken in consideration (refer to Figure 2) 
 
                                      tan 2β = 2 tan β/(1-(tan β)2)                                             (4) 
 
Since y' = tan β stands for the slope of the minor principal stress, then; Eq. (4) 
takes the following form;         
                                                                               
                                       y'² + (2/ tan 2β) y' - 1 = 0                                               (5) 
 
and the principal stress directions are related as; 
 
      tan 2β = 2σrθ/(σrr – σθθ) = ((-sin θ cos (3/2 θ))/(sin θ sin (3/2 θ) + (1/Α)√r)     (6) 
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 Using θ = arcsin (y/(x2 + y2)1/2) and r = (x2 + y2)1/2, Eq. (6) can be written as; 
                                                  
     tan 2 β = (-sin (arcsin(y /(x2 + y2)1/2)) cos (3/2 arcsin (y /(x2 + y2)1/2))/                                               

                    (sin (arcsin (y /(x2 + y2)1/2) sin (3/2 arcsin (y /(x2 + y2)1/2)) +                                                   

                    (1/Α)(x2 + y2)1/4                                                                                    (7) 

 
Substitutions of Eq.(7) into Eq.(5), two differential equations related to the 
principal stress trajectories along with prescribed boundary conditions are set; 
 
                                     Σ1 = y’1  = -1/ tan 2 β - 1/ sin 2 β                                      (8) 
 
                                     Σ2  = y’2 = -1/ tan 2 β  + 1/ sin 2 β                                    (9) 
 
with;  x = x0 = ]-∞, + ∞[  and  y1 = y01 = ]-∞, + ∞[ ,   y2 = y02 = ]-∞, + ∞[          
                                             
and;  β = 1/2 arctan ((-sin (arcsin (y/(x2 + y2)1/2)) cos (3/2 arcsin (y /(x2 + y2)1/2))/ 
 
        (sin (arcsin (y/(x2 + y2)1/2) sin (3/2 arcsin (y/(x2 + y2)1/2)) + (1/Α) (x2 + y2)1/4)                               

                                                                                                                             (10) 

One can notice that by changing β by β’ such as tan 2β’ = tan (π - 2β) = - tan 2β, 
solutions for symmetries principal stresses trajectories are obtained. 
                                                                                                                                                
Tresca’s differential equations related to the or maximum shear stress function 
relative to the applied stress is given as follows 
 
                                            Σ12 = y’5 = -2 / sin 2 β                                              (11) 
 
with,  x = x0 = ]-∞,+ ∞[  et  y5 = y05 = ]-∞,+ ∞[        
  
 
 
 
 
 
 
       
                   
                      
 
 
                         
                        

Figure 3: Microscopic observations of crazes in (PS) under tension [5]. 
 



4. STRESS INTENSITY FACTOR 
 
Irwin [9] was the pioneer in the determination of a parameter as significant as the 
Stress Intensity Factor (SIF) using basically the theory of elasticity.  The stress 
intensity factor for a fissured plane medium under mode I is defined as follows 
[10];   

 
                                       KI = lim [σyy (2π r)1/2 ]                                           (12) 
                                                r           0     
where,            
         
             σyy  =  A.(L /r)1/2.σ∞ (cos θ/2 (1 +  sin θ/2 sin (3/2) θ + 1/A (r/L)1/2)     (13) 
 
Substitution of Eq. (2) into Eq. (12), one can get;                          
 
                   KI = 1.12 .(π.L)1/2. σ∞. cos θ/2 (1 + sin θ/2 sin (3/2) θ)                       (14) 
 
Finally, the total SIF takes the following form; 
 
                   KI /K0 = 1.12 (π.L). cos θ/2 (1 + sin θ/2 sin (3/2) θ)                        (15) 
 
Here, K0 is the stress intensity factor in absence of the damage. 
 
Figures (5) to (6) show that variations of the stress intensity factor KI/K0 are given 
according to the length of the principal crack and the position of the microscopic 
crazing patterns compared to the latter. It is noted that the fissured zone disturbs 
the propagation of the principal crack either by a progressive acceleration of the 
positive value of KI/K0 or by a rather drastic reduction thus delaying this 
propagation by the negative value of KI/K0      

 
By fixing the position of the crazing patterns in the fractured zone and while 
varying the length of the crack gradually, one notices that the SIF KI/K0 presents 
two fields distinct from one to another. The increase in KI/K0 supports the crack to 
go forwards then propagating in a rectilinear path. The reduction in KI/K0 causes 
retardation in the propagation until the so-called “crack arrest”.   

 
Fixing the length of the principal crack, one notes that KI/K0 decreases in a drastic 
way.  In this case, the effect of reduction in the intensity of the stress delays the 
propagation of the main crack.  On the other hand, by fixing the position of these 
crazing patterns and while varying the length of the crack, the amplifying effect 
takes over. Then, an increase in the intensity of stress field in the vicinity of the 
main crack is apparent and leads to an acceleration of the propagation of the 
crack. 
 
 
 



 
5. TRANSLATIONAL ENERGY RELEASE RATE   

 
Closed contour of integration including the crazing patterns is selected by the use 
of the previous differential equations corresponding to the minimal principal 
stresses trajectories. Energy Release Rate (ERR) is determined by computing the 
area limited by the contour itself and the X-axis coordinates in one side only 
because of the symmetry. This rate is given by the following relation;   

 
                                                x   y 
                                                JI =  ∫   ∫   (y2 (x, y)) dy dx                                   (17)                                     
                                                                                 -x   -y 
                               
where y2 (x, y) are solutions to the differential equations.  
 
The variation of the rate of energy due to the translation of the damage zone is 
plot with respect to the position of the crazing patterns using contour defined by 
the differential equations as shown in Figure (7). For reason of simplification, the 
translational ERR is given dimensionless as JI / J0 where J0 = G = K0 

2 / E 
corresponds to the ERR by the initial crack in the absence of the damage zone 
(Griffith’s criteria).  
 
One notices that the energy release rate JI/J0 corresponding to each length of the 
crack increases in an exponential way which leads to an acceleration in the 
propagation of the main crack. This process decreases the toughness of the 
material. On the other hand, for another contour, JI/J0 decreases in the same way 
proving that a deceleration in the propagation of the crack has taken place and 
consequently, increasing the material toughness.   
 
6. CONCLUSION 
 
Analysis of the distribution of surface crazes in the vicinity of a stationary edge 
crack in a polystyrene (PS) sheet in tension has shown that the craze growth 
occurs along directions parallel to the minor principal stress axis. It shown in this 
study that the stress field distribution in the vicinity of the main crack is obtained 
by the resolution of some differential equations. Reduced principal stresses 
trajectories are established according to Mohr’s criteria. It is proven, herein, that 
the mode I Stress Intensity Factor and the Energy Release Rate are employed to 
quantify the effects on a crack of the damage consisting of crazing patterns. 
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Figure 4: Variation of the reduced principal stress Σ1, Σ2, Σ12  function 

                         of the orientation and the position of crazing patterns. 
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                  Figure 5: Variation of KI / K0 function of the length of the crack  
                                  and the position of the crazing patterns.   
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Figure 6: Variation de KI / K0 function of the  
                 position and the length of the crack. 

 

Figure 7: Variation of the energy release rate   
                J/J0  function of the position of the       
               crazing
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