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Abstract 
The paper deals with the effect of stress triaxiality on the onset and evolution of 
damage and fracture in aluminum alloys. Comparison of results of three-
dimensional finite element analyses with data obtained from smooth and pre-
notched tension and shear specimens leads to a damage criterion formulated in 
stress space. In addition, a fracture criterion based on critical damage parameters 
is proposed. Different branches of these functions are taken into account 
corresponding to different damage and failure modes depending on stress 
triaxiality and Lode parameter. 
 

1 Introduction 
The accurate and realistic modeling of inelastic behavior of ductile metals is 
essential for the solution of numerous boundary-value problems occurring in 
various engineering disciplines. Great efforts have been made in the attempt to 
develop unified models for predicting the occurrence of damage and failure in 
materials and structures under general loading conditions. Within the general 
framework of continuum thermodynamics of irreversible processes several 
continuum damage models have been proposed which are either 
phenomenologically based or micromechanically motivated. Accurate and 
efficient constitutive models of damaged ductile materials are needed as the basis 
for an accurate theory of ductile fracture. Critical values of proposed continuum 
damage variables may be viewed as major parameters characterizing the onset of 
failure. 
Besides the stress intensity, the stress triaxiality has been shown to be the most 
important factor that controls initiation of ductile damage. Damage conditions and 
damage evolution laws, however, are often validated with experimental data 
obtained performing uniaxial tension tests. The transferability of the identified 
parameters to multiaxial stress states with different stress triaxialities is not 
always controlled and, thus, seems to be questionable. Attempts to take into 
account the effect of stress triaxiality in their continuum approaches have been 
presented by Borvik et al. [1], Bonora et al. [2], Bai and Wierzbicki [3], and 
Brünig et al. [4] based on tension tests with notched specimens. Bao and 
Wierzbicki [5] proposed fracture strain criteria based on three different branches 
with shear modes for negative stress triaxialities, void-growth-dominated modes 
for large positive triaxialities and mixed modes for lower positive stress 
triaxialities. In the hydrostatic pressure regime, Bao and Wierzbicki [6] proposed 
a cut-off value of stress triaxiality below which damage and fracture do not occur. 
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2 Continuum damage and failure model 
A macroscopic continuum model is used to predict the irreversible material 
behavior while ignoring details of the microscopic mechanics of individual voids 
and their interaction. Brünig [7] proposed a phenomenological framework to 
describe the inelastic deformations including anisotropic damage by microdefects. 
The approach is based on the introduction of damaged as well as corresponding 
fictitious undamaged configurations.  
The effective undamaged configurations are considered to formulate the 
constitutive equations describing the effective elastic-plastic deformation 
behavior of the undamaged matrix material. Assuming isotropic hyperelasticity 
the effective stress tensor is expressed in the form 
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where G and K represent the shear and bulk modulus of the matrix material and 
 is the elastic part of the logarithmic strain tensor.  Ael

In addition, stress-triaxiality-dependent plastic yielding of the matrix material is 
adequately described by the Drucker-Prager-type yield condition 
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where 1I  and 2J  are invariants of the effective stress tensor ,T c  denotes the 
strength coefficient and a represents the hydrostatic stress coefficient where a/c is 
a constant material parameter. In elastic-plastically deformed and damaged 
metals, irreversible volumetric strains are mainly caused by damage and, in 
comparison, volumetric plastic strains are negligible. Thus, the isochoric effective 
plastic strain rate 
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describes the evolution of plastic deformations where γ  is the equivalent plastic 
strain measure. 
Furthermore, the anisotropically damaged configurations are used to formulate 
damaged elastic and damage constitutive equations characterizing the deformation 
behavior of the damaged aggregate. Experiments have shown that the existence of 
microdefects results in a decrease of the stress level in the aggregate and in a 
decrease of the elastic material properties when compared to the response of the 
virgin undamaged material. Thus, the stress tensor of the damaged ductile solid is 
given by 
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where 1...η η  are material parameters taking into account the deterioration of the 
elastic properties due to the occurrence of damage [7] and  denotes the 
damage part of the strain tensor. 

Ada

In addition, constitutive equations for damage evolution are required and the 
determination of onset and continuation of damage is based on the concept of 
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damage surface. In pure shear and compression tests which are in the range of 
zero or low negative stress triaxialities shear mechanisms dominate. In this regime 
the onset of damage is assumed to be governed by the damage criterion 

 2
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where σ  denotes the damage threshold stress representing the material toughness 
to microdefect propagation and the stress triaxiality (1 3 3/ /m eq )2I Jη σ σ= =                                     
is defined as the ratio of the mean normal stress and the von Mises equivalent 
stress. This regime of low stress triaxialities is limited by the cut-off value of 
negative stress triaxialities 1 3/η = −  and the value of transition to the mixed-
mode regime is 0η = .  
In the range of high positive stress triaxialities damage is mainly caused by void 
growth. In this regime the onset of damage is suggested to be governed by the 
damage criterion 
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and the value of transition to the mixed-mode regime is 1 3/η = . 
At stress triaxialities between the above two regimes damage may develop as a 
combination of shear and void growth modes. In this regime, the onset of damage 
is assumed to be governed by the damage criterion 

 1 2
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The damage mode parameter 
 1 3 dβ η= − + ω  (8) 
describes the dependence of damage initiation on stress triaxiality and Lode 
parameter 
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expressed in terms of the principal stress components  and . 1 2,T T 3T
Alternatively, Brünig et al. [4] proposed the damage mode parameter 
 ( )1 mdβ η= −  (10) 
only depending on stress triaxiality. In Eqs. (8) and (10) d and m represent 
additional material parameters.  
The damage evolution law models the increase in macroscopic strains caused by 
the simultaneous growth of voids, their coalescence as well as the evolution of 
micro-cracks and micro-shearbands leading to anisotropic damage behavior. This 
will be adequately described by the damage rule 
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which takes into account isotropic and anisotropic parts, µ  is the rate of the 
equivalent damage strain measure and T  denotes the stress tensor work-conjugate 
to the damage strain rate  [7]. Hda

It should be noted that in the high stress triaxiality regime 1 3/η ≥                              
first damage is caused by nearly isotropic growth of voids and anisotropic effects 
occur later due to the coalescence of voids. This transition from the isotropic to 
the mixed damage mode with simultaneous further growth and coalescence of 
voids is often predicted by a critical void volume fraction (see [7] for further 
details) depending on initial porosity and, in the considered generalized case, on 
stress triaxiality. This will lead to an increase in damage mode parameter β      
with increasing damage. 
The transition from micro-defects to macro-cracks is assumed to be adequately 
described by the failure criterion 

 1 2
1 0
3

fail da da
crf I Jβ µ= + − =  (12) 

formulated in terms of the first and second deviatoric invariants 1
daI  and  of 

the damage strain tensor . In Eq. (12), 
2
daJ

Ada
crµ  denotes the critical equivalent 

damage strain measure. The onset and evolution of macro-cracks is numerically 
modeled by an element erosion technique. 
 

3 Numerical simulations 
Numerical simulations of various tension and shear tests are performed. 
Driemeier et al. [8] discussed experiments on pre-notched tension and pre-
notched shear specimens taken from a 6.35mm thick plate of aluminum alloy. 
These tests provide a wide range of stress triaxialities. In addition, unnotched 
specimens were tested to obtain the basic elastic-plastic material parameters. 
Figure 1 shows the geometries and finite element meshes of the pre-notched shear 
specimen (a) with a circular channel of 1.0mm depth (detail b) and of the pre-
notched tension specimen with 20mm notch radius (c). Using symmetry 
conditions, only half of the shear specimen and an eighth part of the tension bar 
are numerically analyzed. Eight-node volumetric elements are used to three-
dimensionally discretize the 6.35mm thick specimens. Remarkable refinements in 
the thin regions have been taken into account where evolution of plastic zones and 
first occurrence of damage and failure are expected. 
Tension tests with smooth specimens (UN-T6.35) are considered for identification 
of elastic-plastic material parameters. As long as a homogeneous uniaxial stress 
state exists between the clip gauges, equivalent stress-equivalent strain relations 
can easily be predicted from load-displacement curves of these experiments. This 
leads to Young’s modulus E = 75000 MPa and Poisson’s ratio is taken to be 
ν = 0.3 . Work-hardening behavior during plastic yielding is modeled by a power 
law function for the equivalent effective stress 

  0
0
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with the initial yield strength = 250MPa, the hardening modulus H = 3125MPa 
and the hardening exponent n = 0.135. Of course, necking occurs during the 
elongation of the originally smooth tension specimen which might cause necking 
induced variations in the initially quasi-homogeneous stress and plastic strain 
states. Thus, 3D-finite element simulations of the smooth tension tests have been 
performed which here confirmed the chosen material parameters. 

0c

 

a)

b)

c)  
 
Figure 1: Finite element meshes: a) Shear specimen, b) Detail of pre-notched part 
of the shear specimen, c) Tension specimen. 
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Figure 2: Load-engineering strain curves of tension tests: Experimental (T6.35) 
and numerical (NUM) results as well as onset of damage (dot) 
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Tension tests with pre-notched specimens with different notch radii from 1.25mm 
to 50mm (see Fig. 2) are investigated to study the effect of stress triaxiality and 
Lode parameter on damage behavior. Usually, various unloading paths are driven 
during the tension tests to be able to detect the damage by decreasing Young’s 
modulus. This procedure, however, has been shown to be very difficult for the 
tested aluminum alloy and, especially, for the pre-notched specimens because the 
onset of damage is close to final fracture. Therefore, Brünig et al. [4] proposed an 
alternative method to detect the onset of damage. They performed elastic-plastic 
finite element calculations and the observed discrepancy between experimentally 
obtained and numerically predicted load-displacement curve characterizes the 
onset of damage.  
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Figure 3: Numerical results: Hydrostatic stress and von Mises equivalent stress 
 
Based on the elastic-plastic material parameters identified above the correlation of 
experimental and numerical results is very good in terms of the load-displacement 
curves shown in Fig. 2. The onset of damage can be identified (dots in Fig. 2) and, 
thus, it is reasonable to study at this stage of deformation various stress quantities 
obtained from the numerical analyses. Figure 3 shows the distribution of 
hydrostatic stress 1/3 I1 and von Mises equivalent stress 23J  at the onset of 
damage in the notched center of the tension specimen with 1.25mm notch radius. 
In this high-stress-triaxiality case, onset of damage is predicted in the point of 
maximum hydrostatic stress in the inner region of the cross section (lower and left 
bounds are symmetry axes). It should be noted that these results clearly show that 
3D finite element analyses are necessary because both stress measures remarkably 
vary over the cross section and maximum values are concentrated in small points.  
Moreover, shear tests are analyzed to get information of the effect of state of 
stress on damage in the region of very low stress triaxialities. Load-engineering 
strain curves in Fig. 4 show good agreement between experimental and numerical 
results. The onset of damage is predicted and distributions of stress measures are 
shown in Fig. 5 for the shear specimen with 1.0mm notch depth. Maxima of 
hydrostatic stresses are concentrated on the surfaces of the holes whereas the 
center is nearly free of hydrostatic stress leading to pure shear-mode behavior. 
Maxima of von Mises equivalent stress are also concentrated in the center. Thus, 
onset of damage is predicted to occur in this point. 
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Figure 4: Load-engineering strain curves of shear tests: Experimental (S6.35) and 
numerical (NUM) results as well as onset of damage (dot). 
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Figure 5: Numerical results: Hydrostatic stress and von Mises equivalent stress 
 
Various stress data introduced above are listed in Table 1 for smooth and pre-
notched specimens. These data are used to identify the parameters of the damage 
evolution functions (Eqs. (8) and (10), respectively) shown in Fig. 6. The 
parameters are d = -0.015 in Eq. (8), and d = 1.732 and m = 1.18 in Eq. (10). 
The stress data listed in Table 1 show remarkable influence of specimen’s 
geometry on the first stress invariant characterizing the hydrostatic stress whereas 
the second deviatoric stress invariant is nearly unaffected. This leads to 
remarkably wide range of stress triaxiality parameters covered by these tests. 
Furthermore, in the thick notched tension specimens with nearly quadratic cross 
section necking in thickness direction is observed during the tension tests leading 
to three-dimensional stress states, see list of principal stresses in Tab. 1. In 
addition, thickness effects are also observed in the shear tests with pre-notched 
specimens. Their different geometries lead to wide range of Lode parameters 
covered by these tests. Therefore, the numerical simulations discussed above will 
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be helpful in detecting stress-triaxiality and Lode-parameter dependence of 
material behavior. 
 
 
 I1 2J 3

3J η 1
~T  2

~T  3
~T  ω 

R1.25_T6.35 1304 316 223 0.7927 796 299 209 -0.6951 
R2.50_T6.35 1159 309 202 0.7213 732 291 136 -0.4584 
R5.00_T6.35 1047 314 225 0.6416 710 200 137 -0.7760 
R10.00_T6.35 902 343 249 0.5067 696 112 94 -0.9421 
R20.00_T6.35 755 332 242 0.4374 635 62 58 -0.9845 
R35.00_T6.35 671 332 241 0.3890 607 33 32 -0.9959 
R50.00_T6.35 630 325 237 0.4708 586 22 22 -0.9986 
UNN_T6.35 518 299 217 0.3333 518 0 0 -1.0000 
UNN_S6.35 1041 365 179 0.5483 732 304 5 -0.1788 
F0.50_S6.35 765 342 241 0.4304 646 101 9 -0.6831 
F1.00_S6.35 19 336 85 0.0108 345 1 -327 -0.0241 
F1.50_S6.35 7 314 62 0.0046 318 0 -311 -0.0116 
F2.00_S6.35 7 321 62 0.0041 325 0 -318 -0.0108 
 
Table 1: Stress data at onset of damage 
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Figure 6: Damage mode parameter vs. stress triaxiality 
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4 Conclusions 
The main focus of the present paper was to discuss a general methodology for 
quantitative determination of damage and failure criteria for any ductile metal. A 
series of numerical simulations of experiments with smooth and pre-notched 
tension and shear specimens have been carried out covering a wide range of stress 
triaxialities. Different branches of the criteria have been proposed corresponding 
to different failure modes depending on stress triaxiality and Lode parameter. 
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