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Abstract 
 
A damage model based on Gologanu-Leblond-Devaux constitutive law, extended 
to account for strain hardening, is integrated with a homogenization scheme in 
order to investigate the ductile fracture of multiphase and composite metallic 
alloys. The homogenization scheme supplies the ductile fracture model with an 
accurate prediction of the load transfer between the matrix and the second phase 
particles, leading to a better estimate for the overall strength and strain hardening 
of the composite. Furthermore, the homogenization scheme also allows relating 
void nucleation -particle fracture and/or particle-matrix interface decohesion- 
directly to the stress in the particles. This paper focuses on the effects of the 
mechanical behavior of different phases on the fracture resistance of a composite: 
a parametric study on an elasto-plastic matrix containing brittle-elastic inclusions 
is performed by using the integrated homogenization-ductile fracture model, and 
the results are compared with the results of the damage model alone. 
 
1. Introduction 
 
Ductile fracture can be viewed as three consecutive and interacting stages, namely, 
nucleation, growth and coalescence of voids. Experiments performed on quite a 
large range of multiphase metals have shown that void nucleation occurs via two 
different mechanisms, i.e., particle fracture and particle-matrix interface 
decohesion (e.g. [1]); voids which nucleate in the matrix, away from the second 
phase particles, are rarely observed (e.g. [2]). If the particle is brittle and deforms 
elastically, a void nucleation criterion in terms of the effective stress in the 
particle can be found by equating the total energy released by formation of a crack 
in a particle, to the energy associated with the crack-surface formation (e.g. [3]). 
Void nucleation via particle-matrix interface separation, however, is much more 
complex due to the fact that both the separation energy and the interface strength 
play a role in the problem; therefore, neither critical stress nor critical strain based 
nucleation models are fully satisfactory. In either case, particle fracture or 
interface decohesion, the quality of a void nucleation model depends on a good 
assessment of the stress and strain condition at (and round) the particle. In the 
current literature, phenomenological models incorporating stress and/or strain 
controlled nucleation conditions are being used, but the critical stress/strain values 
are usually overall values and not the local values in the particle or along the 
interface (e.g. [4, 5]). Here, we use an incremental formulation of a Mori-Tanaka 
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scheme for elasto-plastic composites to explicitly account for the stresses and 
strains in both the matrix and particle. In many engineering materials, such as 
dual phase (DP) steels, the volume percentage of the second phase particles 
reaches up to 30% and they have a considerable contribution to the overall 
strength and strain hardening of the composite. Therefore, the benefits of 
incorporating the Mori-Tanaka scheme into the fracture model are twofold: it 
supplies a much more physically sound void nucleation condition, and an explicit 
representation for each phase in the composite leading to realistic overall 
mechanical properties.  
 
The following section describes the homogenization scheme (section 2.1) and the 
damage model (section 2.2). Section 3 briefly explains how the two models are 
combined. In section 4, the preliminary results of a parametric study are shown, 
and finally, section 5 concludes this paper. 
 
2. Description of the model 
 
2.1. Mori-Tanaka homogenization scheme 
 
In this section, we briefly introduce the Mori-Tanaka (MT) homogenization 
scheme for elasto-plastic materials. The reader is referred to [6] and the references 
therein for an extensive account of the model. 
 
The fundamental solution of Eshelby shows that if an elastic homogeneous 
ellipsoidal inclusion in an infinite linear elastic matrix is subjected to a uniform 
remote strain, ε r, the strain inside the inclusion, ε i, is uniform and given as 
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where A is the strain concentration tensor for the single inclusion, I is the fourth 
order identity tensor, ξ is the Eshelby tensor, C M and C i are the stiffness tensors 
(or the tangent operators, in case of incremental plasticity) of the matrix and the 
inclusion, respectively [7]. This expression is only valid for dilute composites. To 
account for interactions among inclusions, MT models relate the average strain in 
an inclusion, 〈ε i〉, to the average strain in the matrix, 〈εM〉. In an incremental form, 
for a non-linear rate-independent mechanical response, Benveniste’s version of 
the MT model reads 
 
 i :ε ε= A M ,  (2) 

 
and the macroscopic response of the composite is modeled as 
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where f i is the volume fraction of the inclusions and C is the macroscopic tangent 
operator of the composite. The strain concentration tensor A in Eq. 3 is related to 
the Eshelby tensor ξ through Eq. 1, and ξ depends on the geometry of the 
inclusion and the tangent operator C M of the matrix. Note that even though the 
matrix material is isotropic, C M is an anisotropic tensor. Numerical simulations 
show that using only the isotropic part of C M (referred to as C M_iso in the 
following) to calculate ξ gives much better results compared to the over-stiff 
predictions obtained by using the full (anisotropic) tangent operator C M [6]. In 
this study, we use a two-step recursive homogenization scheme [8]. The idea 
behind this scheme, as outlined at the top of Fig. 1, is to divide the composite into 
two subsystems, each composed of two subphases, one for the matrix (M) and one 
for the inclusion (i). First, each subsystem is homogenized separately by using the 
MT scheme, where the Eshelby tensor ξ is calculated with C M for subsystem-1 
(M1-i1) and with C M_iso for subsystem-2 (M2-i2). Then, the two subsystems are 
combined trough an iso-strain (Voigt) homogenization scheme. The volume 
fractions of both subsystems are arbitrarily taken to be 50%. Among many 
different homogenization strategies, the one described above was found to give 
the best comparison with direct unit cell finite element calculations in terms of the 
overall response of the composite, as well as per-phase behavior. Note that, here, 
the term “inclusion” is used in a generic sense to refer to a reinforcing phase 
which can be particles, fibers, etc.     
 
2.2. Damage model 
 
In order to account for the heterogeneity of the void nucleation process, we 
assume that it starts when the maximum principal stress in a particle reaches a 
critical value, σ c

min, and continues within a range of critical stress values, ∆σ c, 
corresponding to a distribution of particles with different size and shape, and 
therefore different fracture strength. The void nucleation rate in a functional form 
is taken as  
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where ai are chosen to avoid discontinuities in the porosity evolution. The 
increase in porosity with void nucleation ∆fnuc is related to the particle volume 
fraction fp and aspect ratio Wp (=1) via (see [1]) 
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Particles are assumed to lose all their load carrying capacity after void nucleation, 
giving birth to penny shaped voids with an initial aspect ratio of W0 =0.01.  
 
As soon as they are nucleated, voids start to grow with the plastic deformation of 
the surrounding composite. Taking into account volume conservation of the 
composite, the void growth rate f  reads 
 
 ( ) p

nuc1 ij ,f f fε= − +  (6) 
 
where p

ijε  is the plastic strain rate tensor. The constitutive law proposed by 
Gologanu et al. [9] accounts for spheroidal void shapes. For axisymmetric loading 
conditions analyzed in this paper, where the main void axis e z does not rotate and 
remain parallel to the maximum principal stress, the evolution of the void aspect 
ratio reads 
 
 ( ) ( ) ( )1 ,  S T f zz xx Sf iiS h h h h S Wε= + − + =ε ε ln ,  (7) 
 
where the h parameters are functions of W (void aspect ratio), f (porosity) and a 
power-law strain hardening exponent n. The plastic strain rate is taken to be 
normal to the flow potential: 
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In Eq. 9, C, η, g and κ are parameters that are functions of W and f, and q is a 
heuristic adjusting parameter.  
 
The relatively homogeneous plastic deformation (of the matrix) of the composite 
is interrupted by the localization of the plastic flow in the ligaments between 
neighboring voids, which corresponds to the onset of coalescence. The following 
criterion suggested by Thomason [10] is used: 
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where the parameter α is a function of the strain hardening exponent n. The 
Thomason criterion states that coalescence occurs when the stress normal to the 
localization plane reaches a critical value, which decreases as the voids open (W 
increases) and get closer (χ increases). For a full account of the damage model, 
the reader is referred to [1] and the references therein. 
 
3. Integration of the damage model and the Mori-Tanaka scheme 
 
The composite is homogenized using the MT scheme which is described in 
section 2.1. As shown in Fig. 1, at each plastic strain increment, the macroscopic 
elastic and plastic moduli of the composite that are calculated by the MT scheme 
are transmitted to the damage model. By this way, the damage model interacts 
with the composite as if it is a homogeneous matrix surrounding the voids. Note 
that the MT and the damage models are subjected to exactly the same 
axisymmetric triaxial loading conditions. When the maximum principal stress in a 
particle reaches the critical void nucleation value, σc

min, particle fracture starts,
  
 

The dependence tree of 
the composite for the MT 
scheme.

( )MMT  with Cξ

Matrix (M1) Inclusions (i1)

i1 f− if

Voigt 
(Iso-strain)

( )M_isoMT  with Cξ

≡
For the matrix behavior, the damage
model uses the average macroscopic
properties of the composite.

At each plastic strain increment, the elastic and plastic moduli obtained 
through the homogenization scheme are passed to the damage model.

Matrix (M2) Inclusions (i2)

Subsystem-1 
(f=50%)

Subsystem-2 
(f=50%)

Composite

i1 f− if

 
 
Fig. 1. A schematic diagram showing the dependence tree for the Mori-Tanaka (MT) model and 
the integration of the MT and the damage models. 
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and it continues within a range of critical stress values, ∆σc. The particle volume 
fraction fp is decreased in the MT scheme by an amount corresponding to the 
volume fraction of the particles fractured at that increment, while the increase in 
porosity due to particle fracture is updated in the damage model through Eq. 5. 
With increasing plastic strain in the composite, voids grow, change shape and get 
closer to each other. At each increment, the damage model checks the onset of 
void coalescence according to the Thomason criterion given in Eq. 10. The 
composite is assumed here to fracture at the onset of void coalescence. 
 
4. Parametric study 
 
The matrix of the composite is modeled as a J2 elasto-plastic material with a 
simple power-law strain hardening defined as  
 

 y p

0 0
1

n
E⎛ ⎞

= +⎜
⎝ ⎠

σ
ε

σ σ
,⎟  (11) 

 
where E is the Young’s modulus, σ 0 is the initial yield stress, n is the strain 
hardening exponent, and ε p is the accumulated plastic strain. The material 
properties of the matrix are E/σ 0 =125, ν=0.3, with n=0.1 and n=0.3, for two 
different cases analyzed, respectively. Particles are assumed to be brittle-elastic, 
with Young’s modulus and Poisson ratio equal to those of the matrix. The aspect 
ratio of the newly nucleated voids is W0 =0.01. Axisymmetric loading is imposed 
under constant stress triaxiality T. 
 
Figure 2 shows the normalized equivalent stress σ e q /σ0 versus the equivalent 
plastic strain ε eq, for the MT homogenization scheme alone (no particle fracture), 
for the damage model alone (with all the particles assumed to have fractured right 
at the beginning of the plastic regime), and for the integrated MT-damage model 
(with relatively early and fast void nucleation, i.e., σ c

min/σ0 =2 and ∆σ c/σ0 =0.5), 
for T=1/3. For the integrated MT-damage model, after the onset of void 
nucleation, there is a competition between the hardening due to the strain 
hardening of the matrix of the composite and softening due to the decrease in the 
load carrying capacity of the fractured particles. It is clear that the results of the 
integrated MT-damage model converges to the results of the damage model alone 
for σ c

min/σ0→0 and ∆σ c/σ0→0, and to the results of MT scheme alone for 
σ c

min/σ0→∞ .  
 
Figure 3 shows the evolution of the fracture strain εf plotted against the triaxiality 
ratio T, for the damage and integrated MT-damage models. The initial particle 
volume fraction is taken to be 10%, with void nucleation parameters (for the 
integrated MT-damage model) σ c

min/σ0 =16 and ∆σ c/σ0 =12. We consider two 
cases, with n=0.1 and n=0.3, respectively. There is a considerable difference 
between the predictions of the two models, the fracture strains being much larger 
for the integrated MT-damage model. In the regime T<1, a high gradient in εf 
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Fig. 2. Variation of the normalized equivalent stress σ e q /σ0 as a function of the equivalent plastic 
strain ε eq, for the MT homogenization scheme alone (no particle fracture), for the damage model 
alone (with all the particles assumed to have fractured right at the beginning of the plastic regime), 
and for the integrated MT-damage model (with relatively early and fast void nucleation, i.e., 
σ c

min/σ0 =2 and ∆σ c/σ0 =0.5), for T=1/3. 
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Fig. 3. Variation of the fracture strain εf as a function the triaxiality ratio T, for the damage and 
integrated MT-damage models, for two cases with a different strain hardening exponent, n = 0.1 
and n = 0.3, respectively. 
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with increasing T is observed for the damage model, which is larger for n=0.3, 
whereas εf decreases almost uniformly with increasing T for the integrated MT-
damage model, for both n=0.1 and n=0.3. Moreover, the damage model predicts 
an increase in εf with increasing n, while an opposite tendency, i.e. a decrease in εf 
with increasing n, is observed for the integrated MT-damage model. The reason 
behind this crucial difference is the fact that, with increasing n, void nucleation 
starts earlier and occurs faster in the MT-damage model: the softening introduced 
by particle fracture is more dominant than the hardening introduced by the strain 
hardening of the matrix of the composite. In the damage model, however, all the 
particles are assumed to have fractured right at the beginning of the plastic regime 
and therefore, the decisive parameter for the onset of coalescence is the strain 
hardening exponent n. For the integrated MT-damage model, coalescence occurs 
during void nucleation for all T values. In the case of n=0.1 (n=0.3), the 
percentage of the fractured particles at the composite fracture is 50% (72%) for 
T=1/3, while it decreases with increasing T and it is only 6% (28%) for T=3. 
 
5. Discussions and conclusions 
 
Advanced engineering metallic alloys, such as dual phase steels and multiphase or 
composite titanium alloys, contain a second phase volume fraction of up to 30% 
or more. The different phases in such composites not only have different 
mechanical properties, but also they usually obey different strain hardening 
behaviors. Therefore, for an accurate prediction of the overall macroscopic 
properties as well as the fracture strain of the composite, a fracture model should 
explicitly account for each phase in the composite. For this purpose, we integrated 
an incremental Mori-Tanaka homogenization scheme (see section 2.1) with an 
advanced micromechanics-based ductile fracture model (see section 2.2). The 
parametric study performed in section 4 showed that there is a dramatic difference 
between the fracture strain values predicted by the damage and the integrated MT-
damage models, being much larger for the latter. Besides, the fracture strain εf 
increases with increasing n for the damage model, whereas it decreases with 
increasing n for the MT-damage model (see Fig.3). This difference originates 
from the difference in void nucleation mechanisms assumed in the two models, 
and it clearly confirms the importance of a good void nucleation model to have 
accurate predictions for the fracture behavior. We also compared the predictions 
of the integrated MT-damage model with experiments performed on dual phase 
steels, in terms of fracture strain, and the preliminary results are quite successful 
[11]. The next step is to implement a more realistic strain hardening behavior for 
each phase. 
 
 
 
 
 
 
 

 8



References 
 
[1] D. Lassance, D. Fabrègue, F. Delannay, T. Pardoen, Micromechanics of room 
and high temperature fracture in 6xxx Al alloys, Prog Mater Sci 52 (2007) 62-129. 
 
[2] A.W. Thompson and J.C. Williams, Nuclei for ductile fracture in titanium, in: 
D.M.R. Taplin (Ed.), Proceedings of the 4th International Conference on Fracture, 
Pergamon Press, Oxford, 1977, vol. 2, pp. 343-348. 
 
[3] S. Jun, D. Zengjie, L. Zhonghua, T. Mingjing, Fracture strength of spheroidal 
carbide particle, Int J Fract 42 (1990) 39-42. 
 
[4] C. Chu and A. Needleman, Void nucleation effects in biaxially stretched 
sheets, J Eng Mater Technol 102 (1980) 249-256.    
 
[5] V. Tvergaard, Material failure by void growth to coalescence, Adv Appl Mech 
27 (1990) 83-151. 
 
[6] I. Doghri and A. Ouaar, Homogenization of two-phase elasto-plastic 
composite materials and structures – study of tangent operators, cyclic plasticity 
and numerical algorithms, Int J Solids Struct 40 (2003) 1681-1712. 
 
[7] J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion 
and related problems, Proc R Soc A 241 (1957) 376-396. 
 
[8] T. Van Hoof, O. Piérard and F. Lani, A coupled mean-field/Gurson-Tvergaard 
micromechanical model for ductile fracture in multiphase materials with large 
volume fraction of voids. Part 1: Model description and validation, in preparation.  
 
[9] M. Gologanu, J.-B. Leblond, G. Perrin, J. Devaux, Recent extensions of 
Gurson’s model for porous ductile metals, in: P. Suquet (Ed.), Continuum 
Micromechanics, Springer-Verlag, New York, 1997, pp. 61-130.   
 
[10] P. F. Thomason, Ductile Fracture of Metals, Pergamon Press, Oxford, 1990. 
 
[11] A.P. Pierman, C. Tekoğlu, T. Pardoen, P.J. Jacques, Nucleation, growth and 
coalescence of voids in dual phase steels: from model microstructures to 
microstructure based modeling, submitted to: Proceedings of the 12th International 
Conference on Fracture, Ottawa, 2009.  
 
 

 9


