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Abstract. In order to predict the ductile damage occurrence in metal forming, an 
“advanced” finite anisotropic elastoplastic constitutive equations accounting for 
the “strong” coupling with ductile damage have been developed and implemented 
in general 3D purpose F.E. software ABAQUS/Explicit®. The aim of this paper 
is to compare the 3D formulation using solid elements to the plane stress 
formulation within shell elements, regarding their ability to predict failure in sheet 
metal forming. Comparisons are made in term of the damage and thickness 
distributions as well as the global force – displacement curves. It has been shown 
that the plane stress assumption gives quite different results compared to the 
realistic 3D case when the damage effect (coupling) is taken into account. Also, 
the plane stress assumption is no more valid when plastic flow together with 
damage is highly localized. 
 
 
1  INTRODUCTION 
 
Ductile (or plastic) damage often occurs during sheet metal forming processes due 
to the large plastic flow and its localization in some limited zones. Accordingly, it 
is important to use fully coupled constitutive equations accounting for both 
hardening and the ductile damage when simulating numerically these processes. 
This will be hepfull in both cases, namely to overcome the damage initiation 
during some bulk and sheet metal forming processes as forging, stamping, deep 
drawing, ... or to enhance the damage initiation and growth as in sheet metal 
cutting or metal machining by chip formation for example. 
In our laboratory, an extensive work has been developed since ten years, in order 
to describe the ductile damage modelling in sheet metal forming [1-7]. Based on 
the thermodynamics of irreversible processes with state variables, the advanced 
approach aims to model the coupling between the main mechanical fields and the 
ductile damage. These models have been implemented in Abaqus/standard and 
Abaqus/explicit using the available user subroutines (Umat and Vumat). In the 
present work this approach will be shortly discussed from both the theoretical and 
numerical point of views.  
For sheet metal forming, often shell elements based on plane stress formulation 
are used to reduce CPU time. Some applications are made to various sheet metal 
forming examples. Calculations using both shell and 3D solid elements are 
compared with respect to the damage occurrence and the plastic flow localisation. 
The validation of the plane stress assumption becomes highly questionable when 
localization takes place inside the sheet. 
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2 FULLY COUPLED CONSTITUTIVE EQUATIONS OF NON NORMAL 
ANISOTROPIC PLASTIC MODEL COUPLED WITH DUCTILE 
DAMAGE 

 
Assuming that in metal forming, by large plastic deformation, the elastic part of 
the total strain remains infinitesimal compared to the plastic one, the total strain 
rate decomposes additionally as: 
 e

J
pD Dε= +  (1) 

where the first term represents the Zaremba_Jaumann objective derivatives of the 
small elastic strain and the second represents the finite plastic (objective) strain 
rate defined thanks to the appropriated dissipation potential (see later). On the 
other hand, the objectivity requirement is satisfied by using the so called rotating 
frame formulation (RFF) (see [9, 10] among many others). This aims to formulate 
the constitutive equations on an appropriated intermediate configuration having 
the same Lagrangian orientation as the initial undeformed configuration. This 
consists to rephrase any constitutive model developed under the small strain 
hypothesis by replacing any tensor T  by its corresponding one 
 TT Q TQ=  (2) 
rotated by the orthogonal rotation tensor Q  itself solution of the following 
‘kinematical’ constitutive equation:  
 
 . TQ Q W=  with  0( 0)Q t Q= =  (3) 
 
W  is the spin rate of the rotated frame [9-11]. This rotated description keeps 
unchanged the basic structure of the constitutive equations as formulated in small 
strain hypothesis. 
Using this ‘rotated’ objective formulation a complete set of constitutive equations 
can be formulated for metal forming simulation. In this paper the non associative 
and non normal anisotropic plastic formulation accounting for the nonlinear 
isotropic and kinematic ( ,r R) ( ), Xα hardening fully coupled with the isotropic 

damage ( ),d Y  under isothermal condition is considered (see [7] for the general 
anisotropic and anisothermal formulation). The outline of this model is given here 
after when all the tensorial quantities with a bar ( ) refer to the rotated 
configuration as discussed above (see Eq.2): 
 
*the stress-like state variables: 
   

Cauchy stress tensor: ( )1 :
e

dσ ε= − Λ  (4) 

Back stress tensor: 2 (1 )
3

X d C α= −  (5) 

Isotropic hardening stress ( )1R d Q r= −  (6) 
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Damage stress 21 1 1: : :
2 3 2

e e
Y Cε ε α α= Λ + + Q r  (7) 

where Λ  is the symmetric and positive definite fourth order elastic properties 
tensor of the non damaged material which in the isotropic case takes the well 
known form: 2 1 1e eIµ λ+ ⊗ C.  is the kinematic hardening modulus and  is the 
linear isotropic hardening modulus. 

Q

* the evolution (or constitutive) equations:  
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where λ  is the plastic multiplier which is determined by the consistency condition 
applied to the yield function :  
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The plastic yield function f  is given by: 
 

 ( ) 0
1 1

c
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d d
σ σ σ−
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Where yσ  is the initial yield stress in simple tension; a and b characterize 
respectively the kinematic and isotropic hardening non linearity; β , ,  and  
characterize the ductile damage evolution.  

S s 0Y

The stress norms pσ  and cσ  are the equivalent stresses entering the yield and the 
plastic potential functions. They can be chosen as quadratic [19] or non quadratic  
functions of the effective stress ( )Xσ − . In the present work both pσ  and cσ are 

taken as quadratic functions of the Hill 1948 type: 
 

 ( ) ( ): :c X Hσ σ σ= − − X  (16) 

 ( ) ( ): ' :p X Hσ σ σ= − − X  (17) 

 
where H  (resp. 'H ) is the well known positive definite and symmetric fourth 
order tensor of the plastic yield function (resp. of the plastic potential) 
characterized by six material constants  and  (resp. , , , , , ,F G H L M N 'F 'G

'H , ' , L 'M , ). Note that the classical normal and non associative plasticity is 
recovered by taking 

'N
'H H= leading to c pσ σ= . 

 
3 NUMERICAL ASPECTS 
 
The model developed above has been implemented into ABAQUS/Explicit® FE 
software for metal forming simulation thanks to the user subroutine Vumat 
(ABAQUS® Theory Manual). The dynamic explicit global resolution scheme is 
developed in detail in (ABAQUS® Theory Manual) considering the contact with 
friction of Coulomb type characterized by the friction parameterη . The 
computation of the stress tensor σ  on the rotated (Lagrangian) configuration is 
required in order to evaluate the internal stress vector at each integration point 
inside each finite element and for the end of each time increment. This is realized 
by integrating all the constitutive equations of the model presented above 
including the ductile damage. The classical incremental and iterative elastic 
predictor – plastic corrector method [12] is used. This approach consists of 
applying a total strain step ε∆  taken from the transformation gradient increment 

F∆  at every time increment [tn , tn+1] with tn+1 = tn +∆t. At the beginning of a 
given increment all the fields ( nσ , p

nε , nX , 
n

Q , nR , ) are supposed to be 
known and the problem is to compute their values so that the yield criterion 
eq.(15) should be identically zero at the end of the time increment t

nd

n+1. An 
elastically predicted stress 1

trial

nσ +  is calculated by supposing that the loading 
increment ε∆  is purely elastic and the internal variables remain at their values at 
tn. If the corresponding yield function is higher than zero (i.e; 
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1( , , , )trial
nn n nf X R dσ + > 0 ) a plastic correction is worked out on the stress and the 

other state variables in the manner that the yield criterion remains verified at the 
end of the time increment. The backward Euler and the asymptotic [14] schemes 
are used with reducing the number of equations to be integrated from 21 to only 8 
scalar equations of the three unknowns 1

p

nn + , λ∆  and 1nd +  given by (see [4-7]) in 
the general 3D case:  
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where, for simplicity, use has been made of the notation 
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To assume the plane stress formulation we introduce the condition ( )1 33
0nσ + = . 

This condition imposes that the strain increment 33ε∆  will be calculated from the 
local behaviour equations and not deduced from the kinematics. Accordingly, an 
additional equation has to be solved with the equations (eq.18) and a 4th 
unknown 33ε∆  is added. This additional equation writes: 

 ( ) ( )1
1 11 33 133 33

1 ( ) 2. . . 1
1

ptrial en
n nn n

n

dk d
d

σ ε µ λ+
+ ++ +

−
= ∆ − ∆ −

−
0n =  (19) 

For the 3D problems only the eq.18 are solved, however for the shell structures 
both eq.18 and eq.19 are solved. The iterative resolution scheme is performed 
thanks to classical Newton-Raphson method in order to obtain, at convergence, 
the values of the unknowns 1

p

nn + , λ∆ , 1nd +  and 33ε∆  from which all the other 
state variables can be easily obtained. 
 
 

Tableau 1. Values of the model parameters for the used material. 
parameter E  ν  yσ  F  G  H  L  M  N  
unit MPa - MPa - - - - - - 
 195000 0.3 405 0.9 0.6 0.4 1.500 1.500 2.8 
parameter F'  G'  H '  L'  M '  N'  Q  b  C  
unit - - - - - - MPa - MPa 
 0.2 0.4 0.6 1.500 1.500 1..0 5500 10.0 38000 
parameter a  s  S  β  0Y      
unit - - MPa - MPa     
 290 1 45 2 0     
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4 APPLICATIONS 
 
Some examples of sheet metal forming are now simulated with the proposed 
model using the material constants given in Table 1. The material anisotropic 
parameters are chosen in the manner to give arbitrary very high anisotropy for 
both the yield stress criterion and the plastic flow rule (see (Fig.1)). All the 
examples are made using both the volume 3D elements (C3D8R) and thin shell 
(S4R) elements from ABAQUS® element library.  
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Fig 1. Stress ratio and Lankford coefficient of the considered high anisotropy. 

 
 
4.1 Cylindrical deep drawing cup test 
 
This example concerns the well known Swift deep drawing test. For the plane 
stress calculation the blank sheet is meshed with 12000 S4R shell elements (with 
3 gauss point in the element thickness) and for the general 3D calculation the 
blank is meshed with 36000 elements (3 element layers in the thickness 
direction). The (Fig.2) shows comparison of damage maps obtained with 3D and 
shell elements for two different punch displacements. In this figure we can 
observe that maximum damaged areas are the same, but the displacement of the 
first damage initiation is quite different. In (Fig.3b) we observe that the punch 
force-displacement curves are closed until the softening stage. Note that the 
maximum punch force due to the 3D model is about 17% higher than the shell 
elements calculations. In (Fig.3a) we observe that the thickness reduction follows 
the damage distribution. However, the 3D solid calculation gives more important 
thickness reduction with less damage values. The calculation CPU times are about 
8 hours with shell elements and 21 hours for 3D solid elements (3 times more 
important). 
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3D Solid elements Plane stress shell elements 

  
U=11mm U=9mm 

  
U=12mm U=10mm 

 
Fig 2. Damage maps of the swift test for different punch displacement obtained 

with 3D solid elements and thin shell elements (upper face). 
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(a) Damage and thickness distributions along 

meridian path for u=11mm. (b) Global punch force –displacement curves. 

 
Fig 3. Comparisons of global and local results obtained with 3D solid elements 

and thin shell elements (3 gauss points). 
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4.2 Cross deep drawing test 
 
This example concerns the widely used cross deep drawing test. For the plane 
stress calculation the blank sheet is meshed with 15000 S4R shell element (with 5 
gauss points) and for the general 3D calculation the blank is meshed with 60000 
elements (4 element layers in the thickness direction). The (Fig.4) shows a 
comparison of damage maps obtained with 3D and shell elements for two 
different punch displacements. In this figure we can observe, as the previous 
example, that maximum damaged zones are the same, but the location of the first 
“crack” initiation is quite different. In (Fig.5) we observe that the punch force-
displacement curves are quite similar until the softening stage. We remark that the 
maximum punch force due to the 3D solid elements is about 15% higher. 
Concerning the CPU times, we have obtained about 12 hours with shell elements 
and 34 hours for 3D solid elements (3 times more important). 
 
 

3D Solid elements Plane stress shell elements 

  
U=30mm U=25mm 

  
U=37mm U=30mm 

 
Fig 4. Damage maps of the cross deep drawing test for different punch displacements obtained 

with 3D solid elements and thin shell elements. 
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Fig 5. Global punch force –displacement curves of the cross test. 

 
 
5 CONCLUSION 
 
In this paper theoretical formulation and numerical implementation of a finite 
deformations anisotropic elastoplastic model fully coupled with isotropic ductile 
damage is shortly presented. General 3D and plane stress cases of the model are 
compared through some sheet metal forming examples. The simulations reveal 
that with the damage occurrence the general 3D gives quite different results 
compared to plane stress ones. Despite a more important CPU time, the general 
3D case is more realistic because it takes into account more accurately the 
mechanical fields gradients through the thickness. This is very important also to 
predict damage localization through the sheet thickness. However, the plane stress 
assumption becomes no longer valid after the localization takes place. 
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