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Abstract 

 

A novel approach, based on the tensor character of the stress intensity at the crack 

front, is presented with the aim of correlating the influence of typical in- and out-

of-plane constraint cases to the apparent fracture toughness of materials under 

mode-I loading in the scope of the LEFM. The analysis demonstrates the 

invariability of the stress intensity tensor ijk  at the crack front, irrespective of the 

specimen thickness, and the necessity of considering, additionally, the constraint 

tensor ijt , corresponding to the second constant term in Williams expansion to 

explain the different fracture toughnesses resulting from the loss of constraint. 

Both components of ijt , the xxt , or conventional T-stress, and the out-of-plane 

component zzt  are evaluated under different constraint conditions showing, in 

general, higher values for zzt  than for xxt , notably for minBB < . The approach 

proposed represents an extension of the current biparametric approach, based on 

the T-stress that proves to be only capable to cope with in-plane constraint cases.  

 

1. INTRODUCTION 

 

The increase in the apparent fracture toughness due to the loss of constraint has 

been recognized in a number of experimental programs (see [1-3]) having an 

important repercussion in practical situations, in which the consideration of a 

enhancement in the fracture toughness may contribute to economize the design of 

brittle elements in the presence of cracks according to the LEFM. The 

biparametric approaches based on the T-stress, allows for in-plane constraint 

effects, such as those arising from crack length influence, but fails to cope with 

those related to out-of-plane constraint, as is the case with the specimen thickness. 

In fact, the influence of the latter is noticeable when minBB <  leading to a 

considerable rise in the apparent fracture toughness, even for moderate reductions 

of the specimen thickness, without the T-stress being influenced. This suggests 

questioning the pertinence of considering the T-stress as the only reference 

parameter to explain general loss of constraint effects and to search for new, more 

general, solutions.  

 

In this work, an approach is developed within the scope of the LEFM, based on 

new defined magnitudes derived from the three-dimensional stress and strain 
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tensor field at the crack front. These are the stress intensity tensor ijk  and the 

constraint tensor ijt  from Williams expansion, and the constraint functions ijψ  

(see [4,5]). Analytical relations are found, and numerical calculations performed 

allowing us to investigate the influence of both the specimen thickness B, using 

Arcan Richard (in what follows A-R) specimens, and the crack length a/W, using 

SENB specimens, on the constraint tensor ijt  by comparing the values of the in-

plane component xxt , i.e., the T-stress, with those of the out-of-plane component 

zzt  for different loss of constraint relations. This model represents an extension of 

the current biparametric approach, and proves to be adequate to tackle both in- 

and out-of plane kinds of constraint that should be subsequently considered in 

establishing the fracture criterion 

 

 
Fig.1: Crack front and associated coordinate systems (cartesian and polar). 

 

2.  STRESS AND STRAIN RELATIONS AT THE CRACK FRONT  

 

Let us consider a linear elastic solid containing a through-thickness crack 

subjected to mode I loading. The following new tensor magnitudes are defined for 

a given specimen thickness B: 

 

a) stress intensity field tensor or half moment stress tensor, as 

);,,(2);,,( BrzrBrz ijij θσπθφ = ,      (1) 

b) directional stress intensity tensor as: 
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c) stress intensity tensor as: 
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where, r is the distance to the crack front, z is the location at the crack front and θ  
is the orientation angle considered. Assuming validity of the Williams expansion 

[6], also for the out-of-plane component zzσ , the stress tensor in the proximity of 

the crack front may be expressed as: 
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in which );,( Bzhij θ  is given by (2), );( Bzt ij  is the θ  independent constant stress 

tensor and );(0 2/1 Br  represents generically the remaining higher order terms. 
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With reference to the system showed in Figure 1 under mode-I loading, it follows 

that 
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where )(θijf  are the angular functions associated with the first term of Williams 

expansion, here extended to three-dimensional case (see [5-7]). Applying the 

generalized Hooke's law, the out-of-plane strain );,,( Brzzz θε  in the proximity of 

the crack front results, after rearranging terms, in 
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where ν  is the Poisson coefficient of the material. Since the out-of-plane 
displacement at a generic position z of the crack front );,0,( Bzu z θ , given by 

dzBzBzu
z

zz∫=
0

);,0,();,0,( θεθ ,       (7) 

must be bounded, the out-of-plane strain );,,( Brzzz θε  at 0=r cannot be singular.  

Allowing for (6), this requires the condition  
 

0)];,();,([);,( =+− BzhBzhBzh yyxxzz θθνθ .     (8) 

 

Replacing (5) into (8) gives: 
 

0)]();()();([)();( =+− θθνθ yyyyxxxxzzzz fBzkfBzkfBzk .     (9) 

 

For mode-I loading, º0== crθθ , and 1)()()( === crzzcryycrxx fff θθθ , so that Expr. 

(9) transforms into  
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proving that the stress intensity tensor );( Bzk ij  results, invariably, given in the 

form 
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irrespective of the specimen thickness. This demonstrates the independence of the 

structure of the stress intensity tensor );( Bzk ij  with respect to the constraint level 

for given in-plane stress intensity factor );( BzK I . 

 

3. THE TENSOR tij  AS A MEASURE OF CONSTRAINT 

 

At the crack front r=0, the singular term as well as the 2/1r  and higher terms of 

Williams expansion of the out-of-plane strain zzε  vanish for any B, so that (see 

(6)). 
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Due to the symmetry, the tensor ),( Bztij  for mode-I loading at the mid-plane of 

the specimen is given by 
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For ∞→B , identified as a plane strain case, zzε  may be neglected. Then (12) 
reduces to xxzz tBzt ν≅);(  and (13) becomes 
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proving that in such a case, the tensor );( Bztij  turns out to be a linear function of 

the );0( ∞→Btxx  component, and can be properly supplanted by the conventional 

T-stress as suggested by the current biparametric approach. However, in the case 

of a specimen of real thickness ∞<< B0 , notably for minBB < , where minB is the 

minimum specimen thickness, Expr. (13) rather than (14) is the only correct 

expression to represent the constraint influence on the apparent fracture toughness 

for a specimen thickness B. 

    

4. DERIVATION OF txx AND tzz FROM THE STRESS FIELD 
 

Different procedures have been applied to calculate the T-stress, as for instance 

that suggested in [8], according to which the xxt  value is found as 

);,(lim)(
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xx θτ
→

=  ,        (15) 

where xxτ  is a function of the stresses given by 
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and α results from the condition 
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aiming to avoid the presence of the S.I.F. IK  in the derivation. xxf  and yyf  are 

the angular functions related to the singular term in Williams expansion. This 

allows us to derive xxt , i.e., the T-stress, as a function of the orientation angle θ . 
 

Applying a similar procedure for zzt leads to 
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where zzτ  is a function of the stresses given by 
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This permits the stress zzt  to be found as a function of the orientation angle θ . 
 

5. NUMERICAL ANALYSIS  

 

With the aim of checking the validity of the preceding theoretical derivations and 

to investigate their possible practical applications, linear elastic three-dimensional 

numerical calculations were performed for aluminum alloy Al 7075 Arcan-

Richard (A-R) and SENB specimens using the finite element ABAQUS code (see 

Fig. 2). The mechanical and fracture properties of the material used were: 

E=71000 MPa, ν =0.34, Rp0.2=533 MPa, KIc=30 MPam
1/2 and KIIc=44.4 

MPam1/2, Bmin=7.9 mm. The specimens were subjected to the critical load 

corresponding to the fracture toughness of the material. In the A-R specimens, a 

constant width W=50 mm provided with a crack length a/W=0.50 was assumed 

throughout the calculations.  

 

A finite element mesh of the type shown in Fig. 2 was considered. It initiates with 

a 1 mµ  element size, which is steadily increased using a 1.22 size ratio allowing a 

detailed stress analysis in the region immediate to the crack front to be performed. 

The reason for selecting A-R non-standard specimens for the calculations is due 

to its further potential applications to mode-II or mixed-mode loading.  
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5.1 Constraint functions 

 

The so-called constraint functions );,( Brzijψ  are defined as 

);,,(2);,,();,( BrzrBrzBrz crijcrijij θσπθφψ == .    (21) 

 

They represent the stress intensity field in the direction of the prospective crack 

propagation, i.e., º0== crθθ  for mode-I loading, and supply relevant information 

on the three-dimensional near stress field allowing us to characterize the 

constraint at the crack front. Replacing the stress expressions in (4) for the critical 

direction for mode-I, 0=θ , into (1) results in 

 

);(0);(2);();,( 2/1 BrBztrBzkBrz ijijij ++= πψ        (22) 

 

 
 

Fig. 2: Modeling the A-R specimen under mode-I loading and F.E. mesh. 

 

At the crack front, i.e., for 0→r the constraint functions );,( Brzijψ  converge to the 

respective stress intensity tensor components );( Bzkij . Figure 3 shows the 

constraint functions );,0( Brijψ  along the x-axis at the mid-plane of A-R specimens 

for a wide range of specimen thicknesses (see [5]). Since, according to (11), the 

structure of the stress intensity tensor does not depend on the constraint, the 

convergence of the constraint functions to ijk  for 0→r  is ensured independently 

of the constraint level. As a consequence, the shape of the different constraint 

functions );,( Brzxxψ , );,( Brzyyψ  or );,( Brzzzψ  resulting for different specimen 

thicknesses may be attributed only to the influence of the respective components 

of the second and/or higher order terms of the Williams expansion. This is 

particularly noticeable by the out-of plane constraint function );,( Brzzzψ , pointing 
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out the influence of the component zzt  of the tensor ijt  on the loss of constraint 

due to the thickness effect (see Figs. 3 and 4). 

 

 
 

  
 

Fig. 3: Constraint functions );,( Brzijψ  at the mid-plane of A-R specimens under 

mode-I loading (from [5]). 

  

The constraint function );,( Brzzzψ  gets normalized, denoted ),( rzzzψ , when 

dimensionless magnitudes, Izzzzzzzz Kk νψψψ 2// == , Bzz /= and Brr /=  are 

used (see Fig. 5). Note that a normalized zzt  may be directly derived from the 

),( rzzzψ  function, so that the zzt value for whichever specimen thickness can be 

obtained using a unique FE calculation.  

 
Fig. 4: Schematic representation of the out-of-plane constraint functions 

);,( Brzzzψ  at the mid-plane of specimens for a variety of different thicknesses. 

 

Table 1: Estimated xxt  and zzt values at the mid-plane for A-R specimens with 

constant a/W ratio and different thickness B. 
 

B[mm] txx[MPa] tzz[MPa] B[mm] txx[MPa] tzz[MPa] 

0.25 -9 -800 2.5 -9 -240 

1 -9 -400 10 -9 -120 
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In the case of very thin specimens, the back-normalization of ),( rzzzψ  for 0→B  

leads to a dimensional constraint function practically coinciding with the ordinate 

axis (see Figs. 3 and 4) while the initial point of the curve remains zzk . This 

evidences the persistent singular nature of the out-of-plane stress zzσ  for  0→B . 

 

5.2 Calculation of txx and tzz in a case of out-of-plane constraint 

 

The effect of the specimen thickness on the constraint is investigated using A-R 

specimens for four different thicknesses. Table 1 gives the estimated values 

obtained at the mid-plane setting the stresses resulting from the FE calculations 

into Exprs. (15) and (16) for xxt  and (18) and (19) for zzt . A strong dependence of 

the xxt  values has been observed with respect to the orientation considered 

impeding a reliable estimation of its value. A more reliable value has been found 

using 2-D FE calculation (see [9]) assuming no influence of the specimen 

thickness on the xxt value under such conditions. 

 

   
 

Fig. 5: Dimensionless constraint function ),( rzzzψ  for A-R specimens under 

mode-I of loading (from [5]). 

 

 

5.3 Calculation of txx and tzz in a case of in-plane constraint 

 

The effect of the crack size on the constraint has been also numerically 

investigated by means of finite elements calculations on 3-point bend (SENB) 

specimens with fixed dimensions, H=100 mm, W=50 mm, s=200 mm, first for 

variable crack length ratios a/W (0.05, 0.10, 0.20, 0.30, 0.40 and 0.50) and 

constant specimen thickness B=1 mm, denoted case 1,  then for constant crack 

length ratio a/W=0.10 and different thickness B (0.25, 1,00, 2.50 and 10 mm), 

denoted case 2. Thus a representative range of these parameters is covered 

including both negative and positive values of the xxt component, i.e., the T-stress. 

 

In the crack immediacy, the FE mesh for the SENB specimen coincides with that 

used for the A-R FE calculations. Outside this zone, the mesh tends to 

accommodate to the particular morphology of the SENB specimen. 
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Fig. 6: Constraint functions xxψ , yyψ  and zzψ  for 3-point bend (SENB) specimens 

with different a/W ratios and constant thickness B=1 mm. 

 

Tables 2 and 3 show the values of the xxt and zzt components estimated for case 1 

and case 2, respectively, setting the stresses resulting from the FE calculations 

into Exprs. (15) and (16) for xxt  and (18) and (19) for zzt . 

 

Table 2: Estimated xxt  and zzt values for 3-point bending SENB specimens with 

different a/W ratios and constant thickness B=1 mm. 
 

a/W txx[MPa] tzz[MPa] a/W txx[MPa] tzz[MPa] 

0.05 -160 -400 0.30 -18 -400 

0.10 -90 -400 0.40 -1 -400 

0.20 -42 -400 0.50 +13 -400 

 

Table 3: Estimated xxt  and zzt values for 3-point bending SENB specimens with 

constant crack length ratio a/W= 0.10 and different specimen thickness B. 

 
B[mm] txx[MPa] tzz[MPa] B[mm] txx[MPa] tzz[MPa] 

0.25 -90 -800 2.5 -90 -250 

1 -90 -400 10 -90 -125 

 

Again, the xxt component becomes a small fraction of the zzt component, even for 

the lowest a/W ratios, confirming the necessity of considering the whole tensor ijt  

containing the zzt component when establishing the instability criterion. In fact, 

according to (12) significant variations in the zzε values at the crack front are 
expected for the different a/W ratios, account given of the variability of the xxt  

and constancy of zzt the component, thus proving the absence of plane strain 

conditions at the crack front.  
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6. CONCLUSIONS  

 

- The stress tensor ijσ  in the proximity of a crack can be obtained as a sum of 

infinite tensor series, based on Williams expansion. 

 

- Alternatively, only two tensors can be used to describe, as an approximation, the 

stress state at the crack vicinity: the stress intensity tensor ijk  and the constraint 

tensor ijt .  

- Since the structure of the stress intensity tensor ijk  is invariable for any 

constraint state, the constraint tensor ijt , becomes the discriminating tensor, hence 

indispensable to define the crack instability conditions under loss of constraint 

conditions. 

 

- Consequently, the consideration of the T-stress, i.e., the xxt component of the ijt  

tensor, is insufficient to define the constraint in a real specimen, in which, 

necessarily, both in-plane and out-of-plane constraint phenomena are implied. 

 

- The theoretical derivations developed in this paper justified those statements. 

The numerical calculations confirm the proposed approach using two types of 

specimens in which the constraint parameters are varied in a representative range. 
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