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Abstract 
 
The meaning of the phrase “constraint effect in fracture” has changed in the 
past two decades from “contained plasticity” to a broader description of 
“dependence of fracture toughness value on geometry of test specimen or 
structure.”   This paper will first elucidate the fundamental mechanics reasons 
for the apparent “constraint effects in fracture”, followed by outlining a 
straightforward approach to overcoming this problem in both brittle (elastic) 
and ductile (elastic-plastic) fracture.  It is concluded by discussing the major 
difference in constraint effect on fracture event in elastic and elastic-plastic 
materials.   
 
 
1. The root cause of  “Constraint Effect in Fracture” in nonlinear materials 
 
Although fracture mechanics has been around for over 50 years, the subject of 
“constraint effect in fracture” is relatively recent, which only started in early 
1990’s.  There were two timely symposia dedicated to the constraint effect in 
fracture by ASTM in 1993 [1] and 1994 [2].  
 
In early years, the term “contained plasticity” referred to the plasticity aspects of 
deeply cracked, bending specimens where the plasticity at high level of load is 
contained in a small region near the crack tip.  On the other hand, CCP (center 
cracked panel) and SENT (single edge notched tension) specimens have 
plasticity spread out extensively to the far field when the applied load level is 
high.  This is best seen with the markedly different slip-line fields in these 
specimens.  Inspired by these different slip-line fields, McClintock had 
proclaimed the possible ‘non-uniqueness’ of crack tip fields in low hardening 
materials [3].  Specimens that possess “contained plasticity” are nowadays 
referred to as “high constraint” geometry and the opposite is then “low 
constraint.”  It is important to keep in mind that “high” or “low” is relative. 
 
In 1968, Hutchinson [4,5] and Rice and Rosengren [6] developed the crack tip 
stress field for power-law nonlinear materials.  The so-called HRR solution 
assumes small strain theory, that is, large strains and large geometry change 
such as blunting are not considered.  In addition, the analysis keeps only the 
first term in the asymptotic series expansion.  As such it is valid only as r 
approaches zero with the origin of the coordinate system set at the crack tip.   
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Figure 1 shows the opening stress in front of a crack plotted as a function of 
non-dimensional distance r/(J/σo), where J is the applied J-integral [7], and σo is 
the yield stress of the material.  In Figure 1, curve A represents the HRR 
solution; curve B is the stress obtained from a small strain finite element (FE) 
analysis; and curve C is the stress determined from finite strain FE analysis.  In 
reality, the stress at the close vicinity of the crack tip is affected by three-
dimensional effects, large deformations, and microstructure fracture processes, 
etc.  The size of this fracture process zone is often believed to coincide with the 
size of the region where finite strain effects are significant, that is, close to 
curve C.  In the limit as r approaches zero, curve B approaches curve A 
asymptotically.  As r increases these two solutions gradually deviate from each 
other since the HRR solution is only valid asymptotically.  On the other hand, 
curves B and C will coincide beyond the region where the large strain effect is 
significant. 
 
Figure 2 shows the crack tip opening 
stress plotted similar to Figure 1, but for 
two extreme cases: one for a high 
constraint specimen geometry and the 
other a low constraint specimen.  High 
constraint geometry includes bending 
or/and deeply cracked specimen.  For low 
constraint specimen geometry, it includes 
shallow crack or/and under tension.  
Figure 2b shows that in some cases of 
high constraint geometry, the stress 
distribution is close to the HRR even as 
the load becomes high.  However, in the low constraint geometry (Figure 2a), 
the stresses gradually deviate from HRR solution as the load increases.    In 
other words, under low loading or small scale yielding (SSY), the HRR solution 
could be used to characterize the stress fields.   Under higher load or large scale 
yielding (LSY), the HRR solution may not be sufficient to characterize the 
crack tip stress field, especially for low constraint specimens.  Since fracture of 
solids is controlled by stress, strain or a combination of the two (e.g., strain 
energy), it may be stated that under SSY a single parameter (e.g. J from HRR 
solution) could be used to determine the fracture event.  On the other hand, J 
alone may be inadequate to characterize fracture under LSY conditions or for 
low constraint specimen/structures. 
 
Note that in Figure 2, all curves converge to HRR as r approaches zero because 
HRR solution is asymptotically correct (under the assumed conditions).  
Difference can be seen between the curves for any finite values of r.  In a 
fracture process zone model the fracture event is controlled by the stress/strain 
at a finite r ahead of the crack tip, as shown in Figure 1 (denoted as rc).  In such 
a case, a higher failure load for the low constraint specimen/structure would be 

 
Figure 1 Crack tip stress fields 
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predicted at the critical distance (rc) if the J-dominated stress solution (i.e. 
HRR) is used.  As seen in the fracture testing, higher fracture toughness is 
generally obtained from a low constraint, shallow crack configuration when 
compared to the standard, deeply cracked specimen.  

 
 
The above discussion demonstrates the need for developing theories of the so 
called “constraint in fracture” in elastic-plastic, non-linear materials, in which 
the stress distribution at a finite distance from the crack tip cannot be accurately 
characterized by the classical HRR solution, as shown in Figure 2.  This 
phenomenon is especially true under LSY conditions and low constraint 
geometry which occur in many ductile metals such as mild steels. 
 
2. Remedy 
 
As the root cause of the “constraint effect” is the deviation of the stress from 
HRR solution at a finite distance from the crack tip, the premise of “asymptotic” 
implies that this stress could be described with better accuracy if higher order 
terms, in addition to the first term as in HRR, are considered in the series 
expansion.  Based on this conjecture, the author and his colleagues have 
developed mathematical asymptotic mechanics solutions near a crack tip [8-10], 
which includes several higher order terms.  The mathematical formulation and 
assumptions are similar to Hutchinson [4,5] and Rice and Rosengreen [6]; but 
the solution procedure is much more elaborated because each of the higher 
order terms (in terms of r to certain power) has many possibilities and each 
option must be carefully examined and analyzed.   
 
Although several higher order terms can be obtained, it was shown that the 
stress, strain and displacement fields can be well characterized by the analytical 
solution with only three terms, up to a large portion of the plastic zone for a 

 
Figure 2a  Stress ahead of a crack tip in 
low constraint specimen geometry 

Figure 2b Stress ahead of a crack tip 
in high constraint specimen geometry 
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variety of fracture testing specimens for n ≥ 3, where n is the strain hardening 
exponent in the Ramberg-Osgood stress-strain law.   Referring to Figure 1, the 
higher-order analytical solution coincides with curve B from the crack tip to a 
distance well beyond r/(J/σ0) = 5 which is several times of the crack tip opening 
displacement. These three terms, as shown in Eq. 1, are controlled by only two, 
not three, parameters (i.e., J and A2) under Mode I plane strain conditions for 
n ≥ 3.  
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Therefore, using the RKR [11] critical stress fracture criterion, when the critical 
stress is at a finite r from the crack tip, it is logical to postulate that the fracture 
initiation is controlled by these two parameters.  It is worth noting that, at this 
moment, both J and A2 are merely two mathematical coefficients resulted from 
solving the nonlinear homogeneous partial differential equations.  They had no 
real “physical” meaning until later, through an energy argument like Rice first 
showed that the coefficient J is path independent [7] and the testing procedure 
was developed by Landes and Begley [12,13] to measure the critical J-value 
and “designated” it as the fracture toughness of the material.  As for the second 
mathematical coefficient A2, since it is a function of specimen/structure 
geometry and loading level, naturally it can be adopted as a quantitative 
measure of the geometry effect and, therefore, the "constraint effect." 
 
In the past decade, the J-A2 methodology using Eq. (1) has been applied to the 
interpretation of fracture initiation [14, 15], ductile crack growth [16,17], and 
dynamic fracture [18].   Specimen size requirement for a two-parameter fracture 
toughness testing procedure is proposed in [19, 20] which shows a much relaxed 
specimen size requirement compared with the stringent requirement in ASTM 
single-parameter testing procedure.  Furthermore, the distinct crack tip fields in 
low hardening material for various specimens [3] can now be explained by 
adding terms with the constraint parameter.  For example, the Prandtl or slip 
line field in the CCP specimen can be generated by varying the value of the 
constraint [21]. 
 
Note that other methodologies were also proposed for quantifying the constraint 
effect in fracture, such as the J-Q and J-T theories [1,2].  Interested readers may 
easily find the references in open literature. 
 
3.  Constraint effect in fracture of linear materials [22-24] 
 
For brittle materials, the crack tip fields may be represented by the Williams 
series solution from linear elasticity theory [25] as    
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Note that Bn are the undetermined mathematical coefficients which came from 
solving the linear homogeneous differential equations.  If a fracture event  is 
controlled by the opening stress within a process zone (or at a critical distance) 
in which the first term dominates and, furthermore, if the RKR model is 
adopted, then  
 

C

C
C r

K
π

σ
2

=         (3) 

 

The subscript “C” denotes critical and 12
BK

=
π

.  The traditional single 

parameter “fracture criterion”, Kc > KIC is therefore equivalent to the RKR 
model, that is, “a critical stress σc is attained at a critical distance rc ahead of the 
crack tip” (see Eq. (3)).  It relates the mathematical coefficient B1 in Eq.(2) to 
the crack growth resistance (or fracture toughness) of the material (KIC) [26]. 
 
If the fracture event is controlled by stress/strain at a finite distance r from the 
crack tip such as that shown in Figure 1, then the “traditional fracture criterion,” 
Eq.(3), may not be sufficient.   For example, Figure 3 shows the opening stress 
in front of a crack tip in four cases, SE(T), SE(B), shallow (a/W=0.05) and deep 
crack (a/W=0.5).  As shown in Figure 3, as r comes close to zero, all four cases 
approach to the K-field, which is the leading term in Eq. (2) when small strain 
formulation is used.  At a finite r, the two shallow (deep) cracked specimens 
have stresses higher (lower) than the K-field.  The difference between the actual 
stress and the K-field is from the higher order terms in Eq.(2).   
 

Figure 3 Crack opening stresses in SE(B) and SE(T) with shallow (a/W=0.05) 
and deep (a/W=0.5) cracks 
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The real question is “how large is the critical distance rc where the critical stress 
resides?”  If it is sufficiently small, for example, rc approaches zero, then a 
single parameter K can be used to determine the fracture event with Eq. 3.  If, 
however, rc is relatively large such that at r = rc the stress field deviates 
significantly from the K-field, then the higher order terms must be considered to 
accurately quantify the actual stress state and, consequently, to characterize the 
fracture event.    
 
Applying the RKR fracture model and keeping two terms in Williams solution 
(Eq. 2), it can be shown that 
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Note that the second term in Eq. 2 containing the T-stress (a constant stress 
parallel to the crack face) vanishes at θ = 0.  Instead, the third term in Eq. 2 is 
used in Eq. 4 as the additional term.  If, on the other hand, one adopts a critical 
strain fracture criterion and solves for the opening strain along θ = 0, one would 
have 
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Equations 4 and 5 indicate that the critical stress intensity factor or the apparent 
fracture toughness Kc of a material increases with the T-stress (Eq. 5) or the 
negative of A3 (Eq. 4).  This trend is summarized in Figure 4.  

 

 
Note that when the second term in either Eq. 4 or 5 becomes significantly large 
the maximum opening stress/strain is no longer ahead of the crack tip along the  
θ = 0 direction even under pure Mode I conditions.  Crack curving would then 
take place based on a maximum opening stress fracture criterion.    It has been 
shown that the fracture toughness reduces when curving occurs (Fig. 4). 
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Furthermore, it appears that using
 

different ASTM recommended 
specimen geometries for fracture 
toughness testing (e.g., three-
point bend and compact tension 
specimens) would create an 
“ASTM window” as plotted in 
Figure 4.  This is caused by the 
range of T or A3 values inherently 
to various standard ASTM 
specimens.  As a result, the KIC 
determined by applying the 
ASTM testing procedure is a 
subset of the complete KC curve 
(or the “material failure curve”).  
It is clear from Figure 4 that KIC 
determined inside the ASTM 
(e.g. E 399) window is 
conservative when used for 

structure integrity assessment for specimens/structures with smaller A3 or 
greater T (i.e., higher constraint configuration) but not conservative otherwise.  
A direct impact of this would be in structures having biaxial stress fields such as 
pressure vessels and piping in which the T-stress would indeed play an 
important role in fracture. 
 
 
4. Comparison of the constraint effect in fracture in elastic and elastic-plastic 

materials  
 
As outlined in the previous sections, the “constraint effect” in fracture could 
occur in either linear elastic or elastic-plastic materials.  The fundamental 
reason to have the constraint effect is the deviation of the stress state from the 
asymptotic HRR solution (or K-solution) in elastic-plastic (or elastic) materials.   
 
Categorically, fracture mechanics community classifies the shallowly cracked or 
tension specimen as low constraint; and the deeply cracked or bending 
specimens as high constraint.  This is based on the classical concept or 
“contained plasticity” as discussed in section 1.  For elastic-plastic materials, 
low constraint specimen or structure would have higher fracture toughness (as 
the stress is lower than the HRR stress, see Fig. 1).  The material failure curve is 
schematically shown in Figure 5. 
 
Comparing the material failure curves in Figures 4 and 5, a very interesting 
observation can be made, that is, the effect of constraint on failure in these two 
materials (linear elastic and elastic-plastic) is entirely opposite.  In the linear 
elastic case, lower fracture toughness can be obtained from low constraint 

Curving occurs 

TC or -AC 

K
C
 

Material Failure 
Curve 

KIC 

ASTM 
Window 

High Low 
Constraint 

DeepShallow 
Crack depth 

Figure 4 Variation of apparent fracture 
toughness with constraint, crack curving,
and its relationship with the ASTM 
window 
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specimens.  This can be explained 
from Figure 3, in which the shallow 
cracks (i.e. low constraint specimens) 
in fact have stresses higher than the 
K-stress.   
 
The knowledge of material failure 
mode as either brittle (limited 
plasticity) or ductile (substantial 
plastic deformation) is therefore 
extremely important when applying 
the constraint theory to the structural 
integrity assessment.  Not only the 
underlying fracture mechanics 
theories for the two materials are 
different, but also the resulting 
fracture toughness could be 
completely dissimilar. 
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