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1 Introduction

The formulation of macroscopic constitutive laws for the behaviour of masonry
is a complex task, due to its strongly heterogeneous microstructure which con-
siderably influences its overall mechanical behaviour. Dueto the quasi-brittle
nature of its constituents, this results in initial and damage-induced (evolving)
anisotropy properties, accompanied with localisation of damage. In its structural
use, such a material may be subjected to cracking, leading tolocalisation of dam-
age at both the structural and fine scales. Closed-form laws have therefore been
developed for equivalent anisotropic media for elastic andcracking behaviour
[1], later applied for the modelling of plate failure [2]. The use of such models in
the cracking regime is however impeded by their costly and cumbersome identi-
fication. As a complementary approach to closed-form constitutive relations, the
multi-scale computational strategies aim at solving this issue by deducing a ho-
mogenised response at the structural scale from a representative volume element
(RVE), based on constituents properties and averaging theorems.

2 Multi-scale modelling of thin masonry shells

The purpose of a computational homogenisation procedure isto obtain numer-
ically the average macroscopic response of a heterogeneousmaterial from its
underlying mesostructure and the behaviour of its constituents. In a computa-
tional context, in each macroscopic or coarse scale point ofthe structural scale
discretisation, a sample of the mesostructure is used to determine the material
response. For this purpose the local macroscopic strain measure is applied in
an average sense to the mesostructure and the resulting mesostructural stresses
are determined numerically. The averaging of these mesostructural stresses and
the condensation of the mesostructural tangent stiffness to the homogenised tan-
gent stiffness then furnish the macroscopic material response associated with the
macroscopic point. The definition of such a nested scheme essentially requires
the definition of four ingredients: (i) a fine scale constitutive description for the
constituents, (ii) the definition of a representative mesostructural sample, (iii) the
choice of a coarse scale representation, and (iv) the set-upof scale transitions
linking structural and fine scale quantities.

A scale transition for homogenisation towards an elastic Kirchhoff-Love shell
behaviour was recently proposed in [3] for running bond masonry. This method



is adapted to non-linear material response. Based on a periodicity assumption
(see Figure 1 for the case of masonry), a strain-periodic displacement field may
be imposed under the form

uα(~x) = Eαβxβ + χαβxβx3 + up
α(~x) u3(~x) = −

1

2
χαβxαxβ + u

p
3
(~x) (1)

where~up is a periodic fluctuation such that~up(~x + ~V α) = ~up(~x), see [3,4]. The
strain measures associated with a shell kinematical description can then be ex-
pressed in terms of the controlling degrees of freedom depicted in Fig. 1. The
constituents inside the unit cell may be modelled using any closed-form formu-
lation. The simplest representation for mortar joints consists in cohesive zones
equipped with a Mohr-Coulomb criterion. The bricks are assumed to exhibit a
linear elastic behaviour. As a result, the response of a coarse scale point under
any loading program may be computed.

Figure 1: Periodic masonry structure (left) and controlling degrees of freedom
(right), see [3].

3 Upscaling framework for failure in thin masonry shell

3.1 Localisation detection at the structural scale

Failure in masonry shells is accompanied by the localisation of deformation and
of degradation. Any localisation enhancement by means of discrete failure zones
at the structural scale to represent failure as performed in[5] for planar cases
would require a criterion to detect localisation and to determine its orientation.
In the same spirit, the definition of computational homogenisation-based fail-
ure should also take into account structural scale localisation detection. How-
ever, in a computational homogenisation procedure, the macroscopic material
response is not postulated a priori but rather computed fromthe material laws
introduced at the level of the mesostructural RVE. The detection and orienta-
tion of macroscopic localisation should then be based on thecomputationally
homogenised quantities, the only available information related to the average
material behaviour.

The detection of the structural scale localisation can be based on the acoustic
tensor concept extended to the shell description, see [6]. This tensor has to be



constructed based on the homogenised stiffness such that the localisation detec-
tion takes into account the coupling of flexural and membraneeffects. It can
be shown, see [7], that such a procedure allows to extract mesostructurally mo-
tivated average localisation orientations, based on the non positive definiteness
of this tensor, for various coupled flexural-membrane loading paths. Note that a
local maximum is found in the negative range of the related acoustic tensor deter-
minant spectrum, which exactly matches the average orientation of the structural
localisation, see Figure 2 for illustration.
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Figure 2: Out-of-plane stair-case bending failure at 45◦ (brick shape factor of
0.5): joint damage distribution (left), Deformed shape of the unit cell (centre)
and related acoustic tensor determinant spectrum (right):non positive values
indicate orientation for potential localisation, where the local maximum exactly
matches the fine scale-motivated orientation.

3.2 Modelling localisation at the structural scale

At the coarse scale, a shell description is used since the appearance of tensile
damage couples the in-plane and flexural effects. The structural scale problem
is solved using the finite element method and using an embedded strong dis-
continuity model in which the behaviour of the discontinuity is obtained from
fine scale computations. Once structural localisation is detected, the coarse scale
displacement field is enriched by a strong discontinuity, asproposed by Armero
and Ehrlich (2006). Displacement and rotation jumps~ξ are introduced along
a discontinuity lineΓd, see Fig.3, the orientation of which is deduced from the
acoustic tensor-based criterion. This jump is added to the regular continuous part
of the displacement field according to

~ue = ~u + Ψ~ξ (2)

where~u represents the displacements and rotations degrees of freedom are col-
lected, andΨ represents a set of functions exhibiting a unit jump along a curve
Γd. Based on the discretisation of the regular and discontinuous parts of the dis-
placement field, the generalised strains (membrane deformations and curvatures)
in the bulk of the material are obtained as

Ee = (~∇~ue)
sym = E(~u) + G(~ξ) + (~ξ ~n)sym δΓd

(3)

whereE(~u) is the strain tensor based on classical kinematics,G(~ξ) is the reg-
ular part of the enhanced strain tensorEe which depends on the displacement



jump andδΓd
is the Dirac function centered on the discontinuity line, see [8].

In order to determine the additional displacement jump fields, the weak form of
equilibrium is solved together with a weak continuity condition on generalised
stresses (bending moments, normal efforts and shear resultant forces) along the
discontinuity

∫

Γd

[

δ~ξu ·

(

~Nd − n · ~n
)

+ δ~ξθ ·

(

~Md − m · ~n
)]

dΓ = 0 (4)

where the stress resultants in the bulk are given by~N = n · ~n and ~M = m · ~n,
and where~Nd and ~Md represent the generalised stresses in the discontinuity.
A material response which links the discontinuity stressesto the displacement
jumps is required to drive the discontinuity and reads

δ~σd =2
Cd · δ~ξ (5)

where 2
Cd is the discontinuity tangent stiffness tensor and~σd represents the

generalised Kirchhoff-Love stresses. Once the embedded discontinuity is in-
troduced, the bulk of the element is assumed to unload elastically from the state
reached at that point.

Contrary to the approach proposed in [8] where constitutivelaws are given by
closed-form laws, both the bulk and discontinuity materialbehaviours are de-
duced from fine scale unit cell computations. A material secant stiffness is ex-
tracted from the unit cell in which the structural localisation has just been de-
tected. The material behaviour of the discontinuity, described by Eq. (5) at the
coarse scale, must be extracted from the fine scale description by means of an
enhanced upscaling procedure. A further damaging unit cellis used for this pur-
pose, which will be denoted in the sequel as localising volume element (LVE).

The extraction of the coarse scale discontinuity response requires the definition
of an average strain to be applied on the LVE from the coarse scale displacement
jump; as well as the evaluation of~σd and2

Cd from the results of the LVE com-
putation. An approximate energy consistency argument is used in order to build
a relationship between the displacement jump vector~ξ across a zero-thickness
zone with an orientation~n used at the coarse scale, and the average strain ap-
plied to a localising region with a finite volume detected at the fine scale. The
localisation width defining the volume of the localising region therefore has to
enter this relationship to take into account in the coarse scale description the
finite fine scale volume on which damage localisation occurs.The overall proce-
dure combining the localisation treatment at both the constituents and structural
scales is depicted in Fig. 3.



Figure 3: Outline of the complete multi-scale localisation-enhanced scheme

4 Application

The proposed multi-scale scheme was implemented within a parallel computa-
tional scheme. A planar case was illustrated in [9] where themultiscale results
are compared to fine scale computations in order to analyse the effects of the pe-
riodicity and scale separation assumptions of the computational homogenisation
procedure. Fig. 4 illustrates such a comparison at the peak load of a confined
shear wall test. For the out-of-plane behaviour, the capacities of the proposed

Figure 4: Confined shear wall test with comparison of (left) fine scale modelling
results and (right) multiscale modelling results. The samefine scale material
parameters were used in both computations.



approach will be shown by means of two structural computations. First, the
case of bed joint out-of-plane failure mode propagation will be considered on
thin masonry shell subjected to pure bending. A defect is introduced in the bed
joint of one unit cell in order to initiate the crack propagation, see Fig. 5. The
structural response of the masonry shell will be drawn for different values of
the mortar joint fracture energy in order to show that the mesostructural material
parameters are properly upscaled. This case will also allowto show the appear-
ance of membrane-flexural couplings due to the different tensile and compressive
strengths of the damaging joints are well incorporated in the homogenisation pro-
cedure and in the localisation analyses. Another structural computation will also
be presented for the more complex stair-case out-of-plane failure mode propaga-
tion.

Figure 5: Application: bed joint out-of-plane failure mode(left) and bed joint
orientation (right).

5 Conclusions

The multi-scale methodology proves to be a valuable tool forthe investigation
of masonry structures. In particular, it allows to account for the strong coupling
between the structural response and the underlying mesostructural features of the
material. Specific enhancements are however needed in orderto account properly
for the consequences of the quasi-brittle nature of the constituents. However,
localisation therefore needs to be detected and treated at both the mesoscopic
and macroscopic scales by means of an enhanced scale transition.
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