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1 Introduction

The formulation of macroscopic constitutive laws for théa@&our of masonry

is a complex task, due to its strongly heterogeneous micrctstre which con-

siderably influences its overall mechanical behaviour. Ruthe quasi-brittle

nature of its constituents, this results in initial and dgexanduced (evolving)

anisotropy properties, accompanied with localisationashédge. In its structural
use, such a material may be subjected to cracking, leadiogatisation of dam-

age at both the structural and fine scales. Closed-form |laws therefore been
developed for equivalent anisotropic media for elastic eratking behaviour

[1], later applied for the modelling of plate failure [2]. &luse of such models in
the cracking regime is however impeded by their costly amdlmrsome identi-

fication. As a complementary approach to closed-form ctuiste relations, the

multi-scale computational strategies aim at solving tessie by deducing a ho-
mogenised response at the structural scale from a repagisentolume element
(RVE), based on constituents properties and averagingeheo

2 Multi-scale modelling of thin masonry shells

The purpose of a computational homogenisation procedueabtain numer-
ically the average macroscopic response of a heterogemeatesial from its
underlying mesostructure and the behaviour of its corestifsi In a computa-
tional context, in each macroscopic or coarse scale poititestructural scale
discretisation, a sample of the mesostructure is used &rdate the material
response. For this purpose the local macroscopic strairsumeas applied in
an average sense to the mesostructure and the resultingtnuesaral stresses
are determined numerically. The averaging of these mesxstal stresses and
the condensation of the mesostructural tangent stiffreedsethomogenised tan-
gent stiffness then furnish the macroscopic material nespassociated with the
macroscopic point. The definition of such a nested schenengaby requires
the definition of four ingredients: (i) a fine scale constiteitdescription for the
constituents, (ii) the definition of a representative méasasural sample, (iii) the
choice of a coarse scale representation, and (iv) the sef-apale transitions
linking structural and fine scale quantities.

A scale transition for homogenisation towards an elastichdioff-Love shell
behaviour was recently proposed in [3] for running bond magoThis method



is adapted to non-linear material response. Based on adm@tjoassumption
(see Figure 1 for the case of masonry), a strain-periodjatiement field may
be imposed under the form

el ) = Fagt + xagtps + () us(#) =~ xaptazs +h(@) (1)
wherei” is a periodic fluctuation such that(z + V) = @#(Z), see [3,4]. The
strain measures associated with a shell kinematical gtgerican then be ex-
pressed in terms of the controlling degrees of freedom tieghio Fig. 1. The
constituents inside the unit cell may be modelled using dnsed-form formu-
lation. The simplest representation for mortar joints ¢sissn cohesive zones
equipped with a Mohr-Coulomb criterion. The bricks are assd to exhibit a
linear elastic behaviour. As a result, the response of asecsgale point under
any loading program may be computed.
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Figure 1: Periodic masonry structure (left) and contrglldegrees of freedom
(right), see [3].

3 Upscaling framework for failurein thin masonry shell

3.1 Localisation detection at the structural scale

Failure in masonry shells is accompanied by the localisadfaleformation and
of degradation. Any localisation enhancement by meanssof elie failure zones
at the structural scale to represent failure as performd8]ifor planar cases
would require a criterion to detect localisation and to detee its orientation.
In the same spirit, the definition of computational homogation-based fail-
ure should also take into account structural scale lodaisaetection. How-
ever, in a computational homogenisation procedure, theaosacpic material
response is not postulated a priori but rather computed fremmaterial laws
introduced at the level of the mesostructural RVE. The dete@nd orienta-
tion of macroscopic localisation should then be based orctmeputationally
homogenised quantities, the only available informatidatesl to the average
material behaviour.

The detection of the structural scale localisation can ls=dan the acoustic
tensor concept extended to the shell description, see [Bis tEnsor has to be



constructed based on the homogenised stiffness such ehktddlisation detec-
tion takes into account the coupling of flexural and membraifiects. It can
be shown, see [7], that such a procedure allows to extraabstresturally mo-
tivated average localisation orientations, based on timepositive definiteness
of this tensor, for various coupled flexural-membrane Inoggiaths. Note that a
local maximum is found in the negative range of the relatediatic tensor deter-
minant spectrum, which exactly matches the average otientaf the structural
localisation, see Figure 2 for illustration.
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Figure 2: Out-of-plane stair-case bending failure at é&ick shape factor of
0.5): joint damage distribution (left), Deformed shape of thet well (centre)
and related acoustic tensor determinant spectrum (rigiaj1 positive values
indicate orientation for potential localisation, where thcal maximum exactly
matches the fine scale-motivated orientation.

3.2 Modelling localisation at the structural scale

At the coarse scale, a shell description is used since theaappce of tensile
damage couples the in-plane and flexural effects. The stalcicale problem

is solved using the finite element method and using an emblestdeng dis-
continuity model in which the behaviour of the discontigug obtained from
fine scale computations. Once structural localisationiealed, the coarse scale
displacement field is enriched by a strong discontinuityyraposed by Armero
and Ehrlich (2006). Displacement and rotation junfpare introduced along

a discontinuity linel'y, see Fig.3, the orientation of which is deduced from the
acoustic tensor-based criterion. This jump is added toggelar continuous part
of the displacement field according to

@, =T+ UE (2)

where represents the displacements and rotations degrees dbfreare col-
lected, andl represents a set of functions exhibiting a unit jump alongrae
[';. Based on the discretisation of the regular and discontisparts of the dis-
placement field, the generalised strains (membrane defamsaand curvatures)
in the bulk of the material are obtained as

E. = (Vi.)”" = E(d@) + G(£) + (£7)*"d, (3)

—

whereE(1) is the strain tensor based on classical kinemaf,) is the reg-
ular part of the enhanced strain ten3rwhich depends on the displacement



jump anddr, is the Dirac function centered on the discontinuity lineg §&].
In order to determine the additional displacement jump $iellde weak form of
equilibrium is solved together with a weak continuity cdrah on generalised
stresses (bending moments, normal efforts and shearaestdrces) along the
discontinuity

/Fd[5@-<Nd—n-ﬁ)+5§9-(Md—m-ﬁﬂdr:o (4)

where the stress resultants in the bulk are givedby: n - 7 andM = m - 7,

and whereN, and M, represent the generalised stresses in the discontinuity.
A material response which links the discontinuity stredsethe displacement
jumps is required to drive the discontinuity and reads

66, =2Cy - 06 (5)

where?C, is the discontinuity tangent stiffness tensor afdrepresents the
generalised Kirchhoff-Love stresses. Once the embeddambmlinuity is in-

troduced, the bulk of the element is assumed to unload eddigtirom the state
reached at that point.

Contrary to the approach proposed in [8] where constituawes are given by
closed-form laws, both the bulk and discontinuity mateb@haviours are de-
duced from fine scale unit cell computations. A material seséffness is ex-
tracted from the unit cell in which the structural localisathas just been de-
tected. The material behaviour of the discontinuity, dégcd by Eq. (5) at the
coarse scale, must be extracted from the fine scale descripyi means of an
enhanced upscaling procedure. A further damaging unitcabed for this pur-
pose, which will be denoted in the sequel as localising velefement (LVE).

The extraction of the coarse scale discontinuity respoageires the definition
of an average strain to be applied on the LVE from the coaale slisplacement
jump; as well as the evaluation 6f, and?C, from the results of the LVE com-
putation. An approximate energy consistency argumentad usorder to build
a relationship between the displacement jump veétacross a zero-thickness
zone with an orientatiom used at the coarse scale, and the average strain ap-
plied to a localising region with a finite volume detectedls fine scale. The
localisation width defining the volume of the localising iy therefore has to
enter this relationship to take into account in the coarsdesdescription the
finite fine scale volume on which damage localisation occling. overall proce-
dure combining the localisation treatment at both the ¢tuesits and structural
scales is depicted in Fig. 3.
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Figure 3: Outline of the complete multi-scale localisatemhanced scheme

4 Application

The proposed multi-scale scheme was implemented withirralplacomputa-
tional scheme. A planar case was illustrated in [9] wherentlhétiscale results
are compared to fine scale computations in order to analgsefficts of the pe-
riodicity and scale separation assumptions of the comipai@thomogenisation
procedure. Fig. 4 illustrates such a comparison at the pmsk of a confined
shear wall test. For the out-of-plane behaviour, the caieaocof the proposed

Figure 4: Confined shear wall test with comparison of (left¢fscale modelling

results and (right) multiscale modelling results. The sdime scale material
parameters were used in both computations.



approach will be shown by means of two structural computatioFirst, the
case of bed joint out-of-plane failure mode propagation el considered on
thin masonry shell subjected to pure bending. A defect ithtced in the bed
joint of one unit cell in order to initiate the crack propagat see Fig. 5. The
structural response of the masonry shell will be drawn fdiedént values of
the mortar joint fracture energy in order to show that theasgsictural material
parameters are properly upscaled. This case will also dthosthow the appear-
ance of membrane-flexural couplings due to the differersileand compressive
strengths of the damaging joints are well incorporatederhtbmogenisation pro-
cedure and in the localisation analyses. Another strulotoraputation will also
be presented for the more complex stair-case out-of-pihed mode propaga-
tion.

Figure 5: Application: bed joint out-of-plane failure mogleft) and bed joint
orientation (right).

5 Conclusions

The multi-scale methodology proves to be a valuable tootHerinvestigation
of masonry structures. In particular, it allows to accountthe strong coupling
between the structural response and the underlying mesuastal features of the
material. Specific enhancements are however needed intoraecount properly
for the consequences of the quasi-brittle nature of thettaasts. However,
localisation therefore needs to be detected and treatedtltthe mesoscopic
and macroscopic scales by means of an enhanced scaleitransit
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