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Abstract

Soft conjunctive biological tissues are mainly constituted of fibres. These elastin
and collagen fibres can support large strains. For this reason, the commonly
used mechanical behaviors are hyperelastic with anisotropy induced by fibres
distribution. If we want to extend these models to dissipative transformations
(damage, plasticity, rupture . . . ) we first have to solve the problem of the definition
of the elastic domain (yield surface).
We propose to study the response of an unconnected fibre network submitted to
an affine transformation which is a very simple model but often used in literature
(see Cox or Sacks for instance). Yield surfaces are then computed using plane
stresses assumption and considering the fibres as an incompressible material. The
responses differ a lot from the mechanical behavior of fibres, which could be fragile,
damageable or plastic. These results lead to a non obvious macroscopic description
of the yield surface.

1. Introduction

This paper focuses on the macroscopic mechanical behavior of a soft tissue made of
a fibre network. In the case of biological soft tissues, theseare mainly constituted of
elastin and collagen fibres in a complex structure which is very difficult to modelize.
Basically, biological soft tissues are the most often considered as hyperelastic
materials. Hyperelasticity models postulate the existence of a Helmholtz free
energy function (commonly named strain energy function), from which the stress-
strain relation derives. The most common models for hyperelastic materials
use Mooney-Rivlin or Neo-Hookean models but for biological tissues, dedicated
models have been proposed in literature. Well known models could be found in
Fung [7] or Demiray [6] and more recently in Holzapfel [9].
Unfortunately, the elastic modeling is sometimes not sufficient. For instance the
prediction of body injuries caused by accident needs much dissipatives models.
Recently, some authors took an interest in the introduction of the damage [1, 3]
or a failure energy [10, 17] in hyperelastic models. This kind of work is a first
step towards dissipative phenomenon. Phenomenological modeling needs several
uniaxial and multiaxial tests to determine the yield surface and the flow rule.
However, for biological tissues, biaxial tests until rupture are delicate.
We propose here to look at the extension of the family model ofCox/Treolar/Sacks
[4, 16, 15] even if the limitations are well known [14]. In these models, the
network is built with unconnected fibres for which the spatial distribution function



is given. The first part of the article recalls the homogeneization method used
to obtain the macroscopic stresses from the mechanical behavior of the fibres.
Then, fragile elasticity, elasto-plasticity and damageable behavior of the fibres are
successively studied. We look in particular at the inflence of the fibres behavior on
the macroscopic behavior and on the resulting yield surface.

2. Homogeneization method

We focus on this study on plane soft tissue subjected to planestresses. The plane
will be defined by its base(e1, e2). We suppose that the tissue is made of identical
mono dimensional fibres of which the function of distribution is homogeneous or
gaussian type [15].
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In case of a homogeneous distribution, we haveQf = 1. An example of gaussian
distribution is plotted on Fig. 1(a), with a meanµR = 0 and a standard deviation
σR = π

6
. The distribution function depends on the angleθ, so it is quite natural to

use polar diagram to plot it ( see Fig. 1(b)). In this Fig. 1(b)three distributions are
plotted : homogeneous,(µR = 0, σR = π

6
) and(µR = π
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In the following, the mono dimensional fibre mechanical behavior will be supposed
known. In all cases, the second Piola-Kirchhoff stress derives from the strain energy
function of the fibre :

sf =
∂wf

∂Ee
f

(3)

Where the Green-Lagrange longitudinal strain of the fibre is simply calculated by
the affine transformation of the macroscopic Green-Lagrange strain tensor.

Ee
f = n

T
En (4)

n is the fibre orientation vector, which can be expressed as :

n = cos(θ)e1 + sin(θ)e2

Finally, the macroscopic second Piola-Kirchhoff stress tensor derives from the sum
of the strain energy functions of the fibres :
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Figure 1. Distribution function examples

3. Elastic and hyperelastic fragile fibres

3.1. Fragile linear elastic fibres

Far from the true case of the biological tissues but much moreeasier to play with,
this first approach aims to determine the macroscopic elastic behavior and the yield
function of a fragile linear elastic network.The constitutive relations are :

sf = E.Ee
f and sf = 0 if

∣
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f

∣

∣ > Ey (7)

where E is the Young’s modulus andEy the failure strain. In that case, one can
show easily that the macroscopic behavior is also linear elastic. The elastic tensor
H then depends on three parameters,E, µR andσR :

S = H(E, µR, σR) : E

Considering that the yield surface is the domain in the stressspace for which no
fibre has reached the failure limitEy. If we posesy = E.Ey, the yield surface in
the principal stress plane(SI ,SII) is then defined by :
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One can recognize the Saint-Venant Criterion defined by the maximum longitudinal
strain [5]. Several elastic domains are plotted on Fig. 2 forvarious distributions. We
observe that this criterion have singular points and that itcould drastically shrink in
the case of a small standard deviationσR.
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Figure 2. Fragile linear elastic criteria

3.2. Fragile hyperelastic fibres

The linear elastic behavior is too simplistic so we propose here to extend the Sacks
model [15] for fragile hyperelastic fibres. The stress-strain relation for a fibre
becomes :

sf = a
[

exp(b.Ee
f − 1)

]

and sf = 0 if Ee
f > Ey (8)

a, b are material constants.
The criteria are computed by an iterative process. Radial macroscopic strain paths
are imposed and the macroscopic stress is calculated using adiscrete integral of
equation 5. The frontier of the elastic domain is reached at the first broken fibre that
give us, point per point the maximum macroscopic stress. On Fig. 3, some criteria



are plotted for various distributions. Criteria appear hereas leaf shaped, more or
less pointed.
Let us note here that introducing a non linear behavior of thefibres brings two main
difficulties. First, we fail in finding integrated forms (S = f(E) or E = f−1(S))
for the mechanical behavior, that implies long calculus at each time step. Second, it
seems difficult to find an explicit equation of the criteria. Apragmatic solution
could be to fit the frontier by polynomamials, but it is not theoritically very
satifiying. However the strain form of the criteria is rathersimple :

max(EI,EII) < Ey

whereEI,EII are the principal macroscopic strains.
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Figure 3. Fragile hyper elastic criteria

4. Hyperelastic plastic fibres

Far from being fragile, the soft tissue has certainely much complex behaviors.
Let us place here in the case where the fibres behavior, deteriorated by too large
deformations could soften and generate residual strains inthe tissue. So, we use the
following elasto plastic models for the fibres, even if it is wide from widespread.
Strains are computed from a multiplicative decomposition of the transformation
gradient :F = F

e
F

p. The elastic behavior wil be either linear or non linear (like in
sections 3.1 and 3.2). For each fibre, the yield function (which is also the potential



of dissipation) simply writes :φ = sf − (sy + Z). Ep andZ are obtained from
Kuhn-Tucker relations and the evolution law :{dZ = α |dEp| if φ.φ̇ = 0} , with α

, a material constant. Complete developments concerning large strain elastoplasticy
models and integration scheme could be found in [2].

4.1. Distorsions of the criteria

We have seen in section 3.1, that for linear elastic behavior, the yield surface is a
rhombus, accordingly to a Saint-Venant criterion. During atensile test where we
will gradually exceed the yield stress of the fibres, the yield surface is obviously
affected like we can see in Fig. 4. An imposed strain in the 1 or2 direction, leads to
an unidirectional distorsion of the criterion, whereas a homogeneous deformation
leads to an isotropic growth of the criterion. This non standard kind of hardening
could be qualified as affine hardening, different from usual isotropic or kinematic
ones.
In a similar way, imposed strains on a hyperelastic-plastictissue (see Fig. 5(a))
change the initial yield surface. An affine hardening is alsoproduced by strains.
It could also be shown that the macroscopic strain rate is notnormal to the yield
surface (Fig. 5(b)). The macroscopic behavior, although composed of fibres with a
standard behavior [8] is not a standard behavior model itself, because the normality
flow rule is not conserved.
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Figure 4. Distorsions of linear elastic plastic criteria (homogeneous distribution)

4.2. Macroscopic behavior

The resulting behavior of a hyperelastic-plastic materialis shown on Fig. 6. One
can observe on Fig. 5(a) that the stress-strain response of the material is quite
complex. A tensile test gives a first hyperelastic stage followed by a softening stage
during the loading. During the unloading, a hyperelastic stage is recovered and the
final residual strains are far from what one can expect at the end of the loading. We
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can see on the Fig. 5(b), the response of the transverse strains to the tensile test.
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Figure 6. Tensile curves of the tissue

5. Hyperelastic damageable fibres

The preceding introduction of the plasticity allowed us to modelize the behavior
after the loss of elasticity. Failure analysis may be donea posteriori using an
energetical criterion based on the elasto-plastic calculation results. If the previous
proposition makes sense for ductile materials, it is undoubtedly criticizable for a
soft tissue where the fibres certainely break the one after the others. An appropriate
framework of this kind of phenomenon is the Continuum Damage Mechanics [13].
We will consider after a linear damageable behavior of the fibres. This model is
choosen for simplicity and the lack of knowledge of true behavior of the fibers until
rupture. The constituve relations are :



sf = (1 − D)a
[

exp(b.Ee
f − 1)

]

with D = Dc

〈

Ee
f − ED

ER − ED

〉

(9)

〈.〉 are the Mac Cauley brackets,ER, ED are respectively the failure strain and the
strain to threshold damage andDc the damage at failure.
The stress-strain curve of this model is plotted on Fig. 7(a). One can se that the first
interest of this model is that it had limited stress and that the damage is a continuous
variable fromD = 0 (no damage) toD = Dc (failure damage). Unfortunately and
for the second time of the article, distorsion of the criteria are rather complicated in
the stress space. Numerical calculation seems showing thatat macroscale convexity
of the elastic domain is not ensured.
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Figure 7. hyperelastic damageable tissue

6. Conclusion

This study is a contribution on the introduction of dissipative phenomena into the
mechanical behavior of a fiber network. Although a fragile linear elastic behavior
of the fiber leads to a Saint-Venant yield criterion, fragilehyperelasticity gives an
original leaf shape criterion. Moreover, in case of a hyperelastic plastic behavior,
the yield surface can be distorted in an affine manner, different from usual isotropic
or kinematic distorsions. The use of damageable models gives interesting stress-
strain curves with the existence of a maximum stress but showa macroscopic yield
surface which seems not to converve the convexity.
Finally, we have the impression that the basic idea of enriching the constitutive
equation of the fibres leads to complex macroscopic behaviors that are very hard
to modelize at macro scale. For instance, the association ofstandard materials for
the fibres do not conduct to a macroscopic standard media. However, the too raw
assumption of considering unconnected fibres will have to berethinked. A possible
way would be to inspire from the work by Le Correet al. [12]. However, once



cannot be satisfied only by constitutive relations if they are not confronted to finely
instrumented experiments (See for instance [15, 11]).
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