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Abstract

Soft conjunctive biological tissues are mainly constidutd fibres. These elastin
and collagen fibres can support large strains. For this reak® commonly

used mechanical behaviors are hyperelastic with anisptioguced by fibres
distribution. If we want to extend these models to dissygatransformations
(damage, plasticity, rupture ...) we first have to solve tlodbjem of the definition

of the elastic domain (yield surface).

We propose to study the response of an unconnected fibre mesubmitted to

an affine transformation which is a very simple model butrofieed in literature
(see Cox or Sacks for instance). Yield surfaces are then cetipusing plane
stresses assumption and considering the fibres as an inessifge material. The
responses differ a lot from the mechanical behavior of filwgagch could be fragile,

damageable or plastic. These results lead to a non obvioa®et@pic description
of the yield surface.

1. Introduction

This paper focuses on the macroscopic mechanical behdamadt tissue made of
a fibre network. In the case of biological soft tissues, tla@eanainly constituted of
elastin and collagen fibres in a complex structure whichrig gtéficult to modelize.
Basically, biological soft tissues are the most often cargid as hyperelastic
materials. Hyperelasticity models postulate the existeof a Helmholtz free
energy function (commonly named strain energy functiommfwhich the stress-
strain relation derives. The most common models for hypstiel materials
use Mooney-Rivlin or Neo-Hookean models but for biologicssues, dedicated
models have been proposed in literature. Well known modmigdcbe found in
Fung [7] or Demiray![6] and more recently in Holzapfel [9].

Unfortunately, the elastic modeling is sometimes not seffic For instance the
prediction of body injuries caused by accident needs mushightives models.
Recently, some authors took an interest in the introductioth® damagel [1, 3]
or a failure energy [10, 17] in hyperelastic models. Thisdkof work is a first
step towards dissipative phenomenon. Phenomenologicdélng needs several
uniaxial and multiaxial tests to determine the yield swefand the flow rule.
However, for biological tissues, biaxial tests until rugtare delicate.

We propose here to look at the extension of the family mod€a#/Treolar/Sacks
[4], [16,[15] even if the limitations are well known [14]. In #8& models, the
network is built with unconnected fibres for which the spatiatribution function



is given. The first part of the article recalls the homoges#in method used
to obtain the macroscopic stresses from the mechanicavimehaf the fibres.
Then, fragile elasticity, elasto-plasticity and damadedehavior of the fibres are
successively studied. We look in particular at the inflenficde fibres behavior on
the macroscopic behavior and on the resulting yield surface

2. Homogeneization method

We focus on this study on plane soft tissue subjected to aeeses. The plane
will be defined by its basée;, e3). We suppose that the tissue is made of identical
mono dimensional fibres of which the function of distribatis homogeneous or
gaussian type [15].

R(0) = - for homogeneous distribution (1)
R(0) = Lexp [“Z;%Rﬂ for gaussian distribution ()

We call the fibre quantity :
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In case of a homogeneous distribution, we h@ye= 1. An example of gaussian
distribution is plotted on Fig. 1), with a mean = 0 and a standard deviation
or = Z. The distribution function depends on the angleo it is quite natural to

use polar diagram to plot it ( see F[g. 1(b)). In this Fig. [ittbee distributions are
plotted : homogeneougy.r = 0,0r = §) and(ur = 5,0r = §).

In the following, the mono dimensional fibre mechanical bédrawill be supposed
known. In all cases, the second Piola-Kirchhoff stress/derirom the strain energy
function of the fibre :

8wf
Sf = p
OES

Where the Green-Lagrange longitudinal strain of the fibrengly calculated by
the affine transformation of the macroscopic Green-Laggatigain tensor.

3)

E; = n’En (4)
n is the fibre orientation vector, which can be expressed as :
n = cos(f)e; + sin(f)e

Finally, the macroscopic second Piola-Kirchhoff stresste derives from the sum
of the strain energy functions of the fibres :



oW 0 | Thick. /MR“S
S=— = —— w;.R(0)df (5)
OE OE | Q Jupsz
Thick. [r=t2
= 0 / sf(E%) [n®@mn].R(0)do (6)
f BR—%
(a) Gaussian distribution (b) Polar representaion

Figure 1. Distribution function examples

3. Elastic and hyperelastic fragile fibres
3.1. Fragile linear elastic fibres

Far from the true case of the biological tissues but much raasger to play with,
this first approach aims to determine the macroscopic elbshavior and the yield
function of a fragile linear elastic network.The consiitatrelations are :

sy=E.E; and s;=0 if |Ef|>E" (7)

where E is the Young’'s modulus ari¥ the failure strain. In that case, one can
show easily that the macroscopic behavior is also lineatielaThe elastic tensor
‘H then depends on three parametéfsy z andop, :

S:H(E,/LR,O'R) - E

Considering that the yield surface is the domain in the stspase for which no
fibre has reached the failure limitY. If we poses, = E.EY, the yield surface in
the principal stress plan@&,, S;;) is then defined by :

‘%(CSI — BSII)‘ S sY

‘L(ASH - BSI)‘ < g
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with

A LR+5 0034(9)
B |- / cos?(0)sin2(8) | R(6)dd
C rr=3 | sint(0)

One can recognize the Saint-Venant Criterion defined by the&men longitudinal
strain [5]. Several elastic domains are plotted on Eig. Zéoious distributions. We
observe that this criterion have singular points and thadutd drastically shrink in
the case of a small standard deviatign
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Figure 2. Fragile linear elastic criteria

3.2. Fragile hyperelastic fibres

The linear elastic behavior is too simplistic so we propase o extend the Sacks
model [15] for fragile hyperelastic fibres. The stressistr@lation for a fibre
becomes :

sf=a [exp(b.E]? — 1)} and s;=0 if E}>FEY (8)

a, b are material constants.

The criteria are computed by an iterative process. Radiatasaopic strain paths
are imposed and the macroscopic stress is calculated ugirggt@te integral of
equation b. The frontier of the elastic domain is reachelefitst broken fibre that
give us, point per point the maximum macroscopic stress. i@rid; some criteria



are plotted for various distributions. Criteria appear hesdeaf shaped, more or
less pointed.

Let us note here that introducing a non linear behavior ofitlres brings two main
difficulties. First, we fail in finding integrated form$ (= f(E) or E = f~1(S))
for the mechanical behavior, that implies long calculussatetime step. Second, it
seems difficult to find an explicit equation of the criteria. pfagmatic solution
could be to fit the frontier by polynomamials, but it is not dhiécally very
satifiying. However the strain form of the criteria is ratenple :

ma:(:(EI, EII) < EY

whereEy, Ef; are the principal macroscopic strains.
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Figure 3. Fragile hyper elastic criteria

4. Hyperelastic plastic fibres

Far from being fragile, the soft tissue has certainely musmmex behaviors.
Let us place here in the case where the fibres behavior, deted by too large
deformations could soften and generate residual straitheitissue. So, we use the
following elasto plastic models for the fibres, even if it iglesfrom widespread.
Strains are computed from a multiplicative decompositibrthe transformation
gradient :F = F°FP. The elastic behavior wil be either linear or non lineardlik
section$ 3J1 and 3.2). For each fibre, the yield function ¢iis also the potential



of dissipation) simply writes p = sy — (s¥ + Z). EP andZ are obtained from
Kuhn-Tucker relations and the evolution lafdZ = « |dE?| if ¢.¢ = 0} , with a

, @ material constant. Complete developments concernigg &rain elastoplasticy
models and integration scheme could be foundiin [2].

4.1. Distorsions of the criteria

We have seen in sectign B.1, that for linear elastic behatheryield surface is a
rhombus, accordingly to a Saint-Venant criterion. Duringmsile test where we
will gradually exceed the yield stress of the fibres, thed/mlirface is obviously
affected like we can see in Figl. 4. An imposed strain in the A direction, leads to
an unidirectional distorsion of the criterion, whereas ambgeneous deformation
leads to an isotropic growth of the criterion. This non staddkind of hardening

could be qualified as affine hardening, different from ussatrbpic or kinematic

ones.

In a similar way, imposed strains on a hyperelastic-plaitgue (see Fig[ 5(a))
change the initial yield surface. An affine hardening is gdsaduced by strains.
It could also be shown that the macroscopic strain rate isxaohal to the yield

surface (Fig[ 5(B)). The macroscopic behavior, althoughpmmsed of fibres with a
standard behavior [8] is not a standard behavior modef itsetause the normality
flow rule is not conserved.
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Figure 4. Distorsions of linear elastic plastic criteria (homogeneous distnifutio

4.2. Macroscopic behavior

The resulting behavior of a hyperelastic-plastic matesiahown on Fig[16. One
can observe on Fig[ 5(a) that the stress-strain respondeeahaterial is quite
complex. A tensile test gives a first hyperelastic stagefatid by a softening stage
during the loading. During the unloading, a hyperelastgstis recovered and the
final residual strains are far from what one can expect atildeoéthe loading. We
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Figure 5. Distorsions of hyper elastic plastic criteria (homogeneous distriu

can see on the Fig. 5(b), the response of the transversesstoathe tensile test.
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(a) stress versus strain
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5. Hyperelastic damageable fibres

The preceding introduction of the plasticity allowed us todalize the behavior
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Figure 6. Tensile curves of the tissue

1 15
E/E
"y

after the loss of elasticity. Failure analysis may be dangosterioriusing an

energetical criterion based on the elasto-plastic caiomaesults. If the previous
proposition makes sense for ductile materials, it is untkedlip criticizable for a
soft tissue where the fibres certainely break the one aftentiters. An appropriate
framework of this kind of phenomenon is the Continuum Damageanics[[13].
We will consider after a linear damageable behavior of thee§ib This model is

choosen for simplicity and the lack of knowledge of true heédreof the fibers until
rupture. The constituve relations are :



. , B — EP

sy =(1—D)a[exp(b.E; —1)] with D =D, TR D 9)
(.) are the Mac Cauley brackets”, E” are respectively the failure strain and the
strain to threshold damage any the damage at failure.
The stress-strain curve of this model is plotted on Fig.| @ae can se that the first
interest of this model is that it had limited stress and thattamage is a continuous
variable fromD = 0 (ho damage) td = D, (failure damage). Unfortunately and
for the second time of the article, distorsion of the craeare rather complicated in
the stress space. Numerical calculation seems showingtthetcroscale convexity
of the elastic domain is not ensured.
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(a) stress versus strain (b) distorsion of the criteria

Figure 7. hyperelastic damageable tissue

6. Conclusion

This study is a contribution on the introduction of dissipatphenomena into the
mechanical behavior of a fiber network. Although a fragiteelr elastic behavior
of the fiber leads to a Saint-Venant yield criterion, fradiigerelasticity gives an
original leaf shape criterion. Moreover, in case of a hylastec plastic behavior,
the yield surface can be distorted in an affine manner, éiffieirom usual isotropic
or kinematic distorsions. The use of damageable models giteresting stress-
strain curves with the existence of a maximum stress but shmacroscopic yield
surface which seems not to converve the convexity.

Finally, we have the impression that the basic idea of emclhe constitutive
equation of the fibres leads to complex macroscopic behatiat are very hard
to modelize at macro scale. For instance, the associatistantlard materials for
the fibres do not conduct to a macroscopic standard media.etwthe too raw
assumption of considering unconnected fibres will have teetienked. A possible
way would be to inspire from the work by Le Coret al. [12]. However, once



cannot be satisfied only by constitutive relations if they ot confronted to finely
instrumented experiments (See for instance([15, 11]).
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