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Abstract 

 

This research utilizes a method for calculating an atomic-scale deformation 
gradient within the framework of continuum mechanics using atomistic 
simulations to examine bicrystal grain boundaries subjected to shear loading. We 
calculate the deformation gradient, its rotation tensor from polar decomposition, 
and estimates of lattice curvature and vorticity for thin equilibrium bicrystal 
geometries deformed at low temperature. These simulations reveal pronounced 
deformation fields that exist in small regions surrounding the grain boundary, and 
demonstrate the influence of interfacial structure on mechanical behavior for the 
thin models investigated. Our results also show that more profound insight is 
gained concerning inelastic grain boundary phenomena by analyzing the 
deformed structures with regard to these continuum mechanical metrics. 
 
1.0   Motivation 
 
Engineered materials with nanometer-scale grain sizes have received significant 
interest recently because of their potentially enhanced material properties 
stemming from dominance of mechanisms involving intergranular dislocation 
nucleation and absorption, as well as coordinated atomic shuffling. However, a 
lack of knowledge and insight into these inelastic deformation mechanisms 
responsible for the observed improvements fuels further interest by the scientific 
community [1, 2].  As grain size approaches the nanometer scale, more atoms are 
located at or near grain boundaries and triple junctions, and the influence of these 
regions on material behavior increases accordingly. Recent research has supported 
the idea of a transition of deformation mechanisms with reduction in grain size, 
and that grain boundaries and triple junctions play a key role in these mechanisms 
[3-6].   
 
Because the origins of material behavior are found at the atomic length scale, 
many efforts have sought to discover key structure-property relationships by 
investigating nanoscale dislocation phenomena.  Experimental investigations into 
these issues are fraught with difficulty and uncertainty, so attention has turned to 
alternative methods such as computer modeling to gain insight.  It is important to 
note that the eventual cooperative effects of these nanoscale deformation 
mechanisms leading to material failure, is inherently multiscale. Thus, recent 
modeling efforts have focused on bridging both length and time scales to 
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understand the influence of structural features on material plasticity.  However, 
there seems to be an inherent disconnect between larger spatial scale continuum 
or statistical models and the underlying discrete nature of these nanoscale 
deformation mechanisms.  Accordingly, it is necessary to complement such large 
scale models with nanoscale information such as insight into various inelastic 
deformation mechanisms from atomistic simulations.  Bridging scales by using 
atomistics to inform continuum models is an area of great importance in 
multiscale modeling and design of deformation- and fracture-resistant materials.  
 
This paper presents methods for calculating continuum mechanical quantities 
related to lattice deformation characteristics within an atomistic framework.  
Two-dimensional bicrystalline structures will be used to analyze the shear 
deformation response in terms of these continuum mechanical metrics, focusing 
on deformation fields in regions at or near each grain boundary.  There is a direct 
correlation between atomic grain boundary structure and shear deformation 
mechanism in each 2D structure, and that each mechanism leads to a unique 
deformation field that is analyzed using the formulated continuum metrics. 
 

2.0   Mathematical Background 
 

Continuum mechanical concepts such as the deformation gradient, F, rotation 
tensor, R, velocity gradient, L, and vorticity, W, are formulated in the context of 
an atomistic framework and utilized for investigating the shear deformation 
behavior of 2D bicrystalline structures.  Zimmerman et al. [7] formulated the 
deformation mapping = ! !F x/ X  in an atomistic framework using the 
interatomic spacing of an atom ! and its nearest neighbor " for an estimate of 
atomic strain, using a locally affine assumption 
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By minimizing the least squares error associated with F as computed with respect 
to all nearest neighbors, an appropriate value for F is obtained for a particular 
atom ! according to 
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where both ! and " are defined as  
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 This formulation provides a definition of the deformation gradient for each atom 
! based on the nearest neighbor list associated with the reference configuration. 
Additional continuum mechanical quantities as previously mentioned can now be 
formulated within an atomistic framework based on this description. 
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3.0   Computational Setup 
 

The 2D bicrystal structures were generated containing a symmetric tilt grain 
boundary located at the center of the simulation domain with the boundary plane 
normal vector in the vertical direction, as shown in Fig. 1. Periodic boundary 
conditions were employed on surfaces normal to the x-direction, and constrained 
free surfaces were enforced in the vertical direction on the upper and lower 
surfaces of the periodic unit cell. A conjugate gradient energy minimization 
method in LAMMPS [8] was used to obtain the initial grain boundary structures 
with an energy convergence of 10-25, and all grain boundaries were then 
equilibrated for 10 ps before undergoing shear deformation at 10K, consistent 
with the NVE ensemble.  A shifted Lennard-Jones interatomic pair potential 
based on a lattice parameter of 4.08Å was used and designed so that both the 
potential energy and its first derivative are zero at the cutoff radius; the energy is 
zero at any radius greater than the cutoff value.  The key potential parameters are 
the cutoff radius (7.6364 Å) which includes the first and second neighbor shells 
only, the cohesive energy (-3.93 eV), mass (196.97 amu), # (3.63638 Å) and $ 
(1.5726 eV). The L-J potential was employed for model 2D problems for 
qualitative purposes rather than for quantitative agreement of dislocation 
mechanisms that might be achieved in 3D simulations using EAM potentials, for 
example.  
 

 
 

Figure 1: Schematic showing a general grain boundary structure and simulation 
constraints necessary for the applied shear deformation. 
 
An additional constraint necessary for shear is that atoms located within three 
times the potential cutoff distance of both the top and bottom surfaces were 
'frozen' and held fixed in their perfect lattice positions throughout the simulation. 
Shear deformation was applied to each structure by holding the bottom group 
completely fixed from movement in all directions, and applying a constant 
velocity in the x-direction to the top region.  Due to inherent high strain rate 
conditions of molecular dynamics (MD), a ramped velocity field was also 
imposed on all atoms between the two rigid regions.  This condition prevents 
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possible shock wave generation in the structure from the prescribed velocity of 
the top atomic region [9].  The prescribed velocity on the top region corresponds 
to an approximate shear strain rate of 108  s-1, and the shear strain is given by 

( )arctan /
o

l d! = , where l is the shear displacement and do is the height between 

the top and bottom frozen atomic regions. 
 
4.0   Mathematical Formulation 
 
In addition to F, continuum measures of R, L, and W were also formulated within 
an atomistic framework.  Once F is known based on the nearest neighbor list, its 
multiplicative decomposition into a rotation tensor R and stretch tensor U is 
straightforward. 

=F RU          (4) 
 
From there, R is separated into both symmetric and skew-symmetric components, 
and as with any skew-symmetric tensor, taking the skew-symmetric component of 
R we define an axial vector also known as the microtation vector, !.  
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where $ijk is the permutation tensor.  Another important continuum concept is 
vorticity, which is derived from the calculation of the velocity gradient, L.  In our 
formulation, we use the instantaneous atomic velocities to approximate L. 
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From this description, an atomic definition of L can be formulated in a similar 
manner to the formulation of F for each individual atom, !. Beginning with Eq. 
(6) and forming a summation over the squared differences, we get 
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then minimize C! by some choice of L!: 
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This equation is rearranged and simplified to become 
 



 5 

!!! "#
klikil

L=             (9) 

 
where 

!
=

=
n

liil
xv

1"

#"#"#$  and  !
=

=
n

lkkl
xx

1"

#"#"#$             (10) 

 
Once these substitutions are made, Eq. (9) is rewritten as 
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this is now the atomic formulation of the velocity gradient for each atom ! 
depending on all nearest neighbors ".   
 
The vorticity or spin tensor W is the skew-symmetric component of L and is 
derived from the additive decomposition of L. 

 
= +L D W                                 (12) 

 
Where D is the rate of deformation tensor and W is the spin or vorticity tensor.  
The calculation of the vorticity vector (") from W is identical to the method used 
to determine !, i.e., 
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5.0   Results 
 
Consider the shear deformation behavior of three 2D grain boundary structures 
with a common tilt axis and different disorientation angle (%) values.  Each grain 
boundary structure is approximately 300 Å2 in total area, and three different % 
values are used: 9.4°, 15.2°, and 27.8°.  These three different disorientation angle 
values were chosen because each boundary structure displayed a different 
deformation mechanism under applied shear.  The three different mechanisms are 
grain boundary migration, sliding, and dissociation respectively.  Images of the 
initial grain boundary structures after energy minimization and at approximately 
5% shear strain are shown below in Fig. (2) and are colored with respect to 
potential energy.   
 
It is obvious from Fig. (2) that each boundary exhibits a different deformation 
mechanism. There is an inherent connection between grain boundary structure 
and deformation behavior under shear.  This does not imply that each grain 
boundary structure within this misorientation range will display a unique 
deformation mechanism, but that atomic grain boundary structure influences 
mechanical response.  It is possible that other shear deformation mechanisms exist 
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within this misorientation range; however, it is more likely that additional 
boundaries within this misorientation range would display some varying 
combination of the aforementioned mechanisms based on the atomic structural 
composition in addition to other factors. 
 

    
(a)                 (b) 

 

    
(c)                 (d) 

 

    
(e)              (f) 

 
Figure 2: Initial 2D grain boundary structures (a), (c), (e), and those same 
boundaries at approximately 5% shear strain (b), (d), and (f), respectively. 
 
To further investigate the shear deformation response of these grain boundary 
structures, continuum mechanical quantities such as F, R, L, and W were 
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employed.  The grain boundary sliding mechanism produces negligible 
deformation in the surrounding lattice regions and is highly localized to the 
boundary region. Therefore, explicit consideration of this mechanism and 
continuum mechanical treatments of it are not considered here. This analysis will 
cover both the migration and dissociation mechanisms simultaneously.  Brief 
discussions of the calculated atomic level F, R, !, and " values will follow, and 
significant results for each quantity will be highlighted. 

 

    
(a)             (b) 

 

    
 (c)                        (d) 

 
Figure 3: At approximately 5% shear strain, the calculated F12 (a) and R12 (b) 
components for each atom during grain boundary migration are shown along with 
the F12 (c) and R21 (d) components during grain boundary dissociation.  

 
The components of the deformation gradient and its rotation tensor provide 
information about the influence of specific directions on atomic deformation.  In 
Fig. (3a), a relatively uniform deformation field is shown that highlights the 
lattice region that underwent deformation as a consequence of the boundary 
migration in the vertical direction (x2).  This region is without large contrasts in 
this component because there is very little difference in the dependence of the 
horizontal direction (x1) of atomic position in the deformed configuration on the 
x2 component in the initial configuration. Fig. (3b) is colored according to R12 
values for the migration mechanism. One thing to note is that as the grain 
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boundary migrates, the orientation of the upper lattice region traversed by the 
migrating boundary reorients to an orientation identical to that of the lower lattice.  
 
In Figs. (3c-d), more confined deformation is observed in the grain boundary 
dissociation mechanism than in migration, and a deformation region is produced 
at the boundary which encompasses the dissociated planes extending out from the 
boundary.  As dissociation occurs, atoms located near the boundary experience a 
net deformation as a result of the applied shear deformation, and (d) shows a 
rotational component in the atomic deformation field for atoms located near the 
slipped planes. This mechanism is quite different than the migration mechanism 
because the atomic deformation accommodation is mainly due to sliding events 
between atoms with small atomic rotations around the slipped planes, whereas the 
migration mechanism is due to large collective atomic rotation.  The dissociations 
that arise in this case are localized slipping events occurring between two planes 
with small rotation fields between, not large atomic region rotations as seen in the 
migration mechanism to accommodate the lattice mismatch as observed in (a-b) 
as the grain boundary migrates vertically.   
 

     
 (a)              (b) 

 

     
(c)            (d) 

 
Figure 4:  The calculated quantities of &3 and '3 are shown for each atom for both 
boundary migration (a-b) and dissociation (c-d) at 5% shear strain. Notice the 
difference in microrotation between the migration planes and lattice regions 
located between migration planes in (a), and the presence of noise in the vorticity 
images (b,d). 
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In addition to the valuable information obtained from analyzing the deformation 
fields with regard to F and R, further insight into the deformation field behavior 
can be obtained from atomic descriptions of ! and " to estimate lattice curvature 
and vorticity.  First consider the migration case shown in Fig. (4a-b).  It is clear 
that the microrotation behavior of migration plane atoms is different from that of 
inter-region atoms not only in magnitude but direction, and large collective 
atomic rotation is present instead of small isolated rotation fields.  All inter-region 
atoms possess an almost identical value of &3 near -0.2, and migration plane 
atoms display a similar trend and value of approximately 0.13.  Fig. (4c) shows 
the microrotation of the dissociation mechanism, and it is clear that the direction 
of the atomic microrotation varies on opposing sides of each slip plane.  This 
indicates that an atom's nearest neighbors undergo a small simultaneous rotation 
as dissociation occurs, but varies depending on the atom’s location with regard to 
the slip plane.   
 
Figs. (4b,d) shows the results of atomic vorticity calculations as outlined 
previously.  It appears that no distinguishable vorticity fields exist in Fig. (4b) as a 
consequence of the migration mechanism.  However, small localized domains of 
vorticity appear in the dissociation mechanism as shown in Fig. (4d) around the 
slip regions.  One of the most obvious features of these figures is the presence of 
noise in the lattices and the lack of more distinguishable vorticity fields.  This is a 
natural consequence of the proposed method for determining L, and future work 
will explore alternative methods and elucidate the effect of these efforts on the 
calculated vorticity fields for each mechanism. Additionally, it is also quite 
possible that probing higher shear strains, larger simulation domains and thin 3D 
grain boundary structures will generate more interesting results concerning 
vorticity and lattice curvature fields.   

 
6.0   Conclusions 
   
This work has shown that continuum mechanical deformation quantities such as 
R, L, ! and " can be formulated within an atomistic framework based on the 
description of F, as provided in [7].  Additionally, the implementation of these 
descriptions can provide unique and fundamental insight into atomic phenomena 
occurring in deformation fields at or near grain boundaries at the origins of 
nanoscale plasticity events under applied shear.  Examples of three different 
deformation mechanisms associated with three different grain boundary structures 
were shown, and detailed analysis was given for two mechanisms in the context 
of these continuum metrics.  Each metric provided distinct information about 
local and neighboring atomic behavior during each mechanism. Varying atomic 
behaviors were seen in the context of each continuum quantity during shear 
deformation, and information about the extent of deformation away from the 
boundary was also shown to depend on the deformation mechanism.    
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