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The equivalent stress hypotheses allow us to compare an arbitrary stress state with 

a uni-dimesional one. These hypotheses are empirical, so some plausibility 

criteria are needed. Diversity of such criteria shows that the hypotheses of 

strength are still being developed. However as a whole they can be systemised. 

Six modelling principles are suggested, leading to a small number of “all-

purpose” models. These models contain well-established hypotheses and can be 

applied to different material classes. 

The various forms of the meridian being of practical relevance can be received for 

these models. Unlike the known models, here the rotational, triangular or 

hexagonal symmetry in the deviatoric plane can be obtained independently from 

the compressibility. Meaningful are only the models with trigonal symmetry. In 

order to compute the parameters of the models a simple optimisation routine as 

well as certain constraints are proposed. 

 

1. Introduction 

The concept of the equivalent stress is used since XVII century to deliver a 

“compact” form of certain relevant information about the current stress state and 

its limits. To make an appropriate model choice the available experimental data 

(e.g. compression −σ , torsion *τ , hydrostatic compression hydσ , etc.) are 

compared with the results of tension test +σ : 

/d σ σ− += ,  += στ /3 *k ,   /hyd hyda σ σ +=  (1) 

In this case the tensile stress is the same as the equivalent stress: 
eq

σ σ+ = . 

The hypotheses can be expressed as a surface Φ  in the principal stress space Iσ , 

IIσ  and IIIσ . To describe this surface, different sets of invariants can be used, e.g. 

• the axiatoric-deviatoric invariants 

kkI σ=1 , 2/'''

2 jiijI σσ= , 3/''''

3 kijkijI σσσ=   (2) 

• the cylindrical invariants (invariants due to NOVOZHILOV) 

kkI σ=1 , 
vM 23 '

Iσ = ,  cos3θ =
'

3

' 3 / 2

2

3 3

2

I

I
  (3) 
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The universal appearance of the model Φ  is as follows: 

' '

1 2 3 eq 1 vMΦ ( , , , ) ( , , , ) ( , , , )I II III eq eqI I I Iσ σ σ σ σ σ θ σ= Ω = Ψ ,  (4) 

Where Φ , Ω , and Ψ  are suitable functions. The invariants can be combined 

according to certain rules discussed later. 

 

2. Additional constraints 

The development of hypotheses results in formulation of additional constraints. 

The necessary conditions are: 

• triangular symmetry in the π-plane, while rotational or hexagonal 

symmetry is taken out of consideration as an inadequate idealisation of the 

material behaviour, 

• restrictions for the plastic POISSON’s ratio at tension pl ] 1; 1/ 2]ν + ∈ − , 

• convexity (not always necessary for failure criteria), 

• suitable approximation of the experimental data. 

However, the above formulated conditions are not enough to make a choice of the 

model. The “missing” sufficient conditions are replaced by a number of 

plausibility requirements [5]. That leads to a reduction of the number of models, 

which can be chosen. Such requirements are: 

• simple and safe application, comprehensible models, 

• evident physical background, not only abstract mathematical construct, 

• explicit (not numeric) solvability with respect to 
eqσ , 

• low number of parameters, 

• dimensionless parameters, 

• continuously differentiable models, also for limit surfaces; continuous 

derivative at the angular point („rounded top“ due to FRANKLIN [4] ), 

• as small as possible power of stresses, presumably 6n ≤ , 

• maximal area of the convex solution in the π-plane, what usually leads to 

singular edges (e.g. the Models of TRESCA, SCHMIDT-ISHLINSKY-HILL), 

• reliability of the result. 

The large number of such plausibility requirements shows that the “strength 

theories” (strength hypotheses) are still being developed. However, these models 

joined together give us the possibility to systemise them. The systematisation 

allows deriving of generalised models, which contain established hypotheses. 
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3. Modelling principles 

The analysis of the existing models [1-6] affords extracting of six modelling 

principles: 

• models are to be built up from planes (DRUCKER’s hexagonal pyramid, 

HAYTHORNTHWAITE’s hexagonal prism, MOHR-COULOMB‘s hexagonal 

pyramid, RANKINE, SAYIR’s hexagonal prism, SCHMIDT-ISHLINSKI-HILL, 

ST. VENANT, TRESCA, YU). For instance by taking all the permutations of 

indices in the equation below one obtains the model due to KO 

eq 2 0
I II III

σ σ σ σ− − + = .      (5) 

• preferably quadratic or cubic equations should be used for simple 

computation of eqσ  (DRUCKER’s cylinder, SAYIR’s trigonal prism, 

SCHMIDT-ISHLINSKY-HILL, TRESCA, VON MISES): 

cubic           ' ' 3 3

2 eq 3 3 eq 33 (1 2 / 3 )I c I cσ σ+ = + ,   (6) 

bicubic           

' 3 ' 2 ' 2 2 ' 4

6 2 6 3 4 2 eq 2 eq 6

eq3 2 6 2

6 6 4

3

/ 3 2 / 3 / 3 1

b I c I b I I

b c b

σ σ
σ

+ + +
=

+ + +
,  (7) 

triquadratic   ' 3 ' 2 3 ' 6 3 2 6

2 6 3 3 eq 3 eq 3 6(3 ) (1 2 / 3 2 / 3 )I c I c I c cσ σ+ + = + + . (8) 

• infinitely expandable sum normalized to the exponent 1, 2,3...r =  

(ALTENBACH, DRUCKER’s cylinder, FREUDENTHAL, IYER, SPITZIG) should 

be applicable in the compressible case 

' / 2 3 ' ' /3

1 1 2 1 2 2 3 1 3 1 2 3 3
eq/ 2 /3

1 2 2 3 3 3

( ) ( ) ...

( / 3) ( / 3 2 / 3) ...

r r r
r

r r

a I a I b I a I d I I c I

a a b a d c
σ

+ + + + + +
=

+ + + + + +
  (9) 

or in the incompressible case 

' / 2 ' /3 ' ' /5 '3 '2 / 6

2 2 3 3 5 2 3 6 2 6 3

/ 2 3 /3 4 /5 3 3 6 / 6

2 3 5 6 6

( ) ( ) ( ) ( ) ...

( / 3) (2 / 3 ) (2 / 3 ) ( / 3 2 / 3 ) ...

r r r r
r

eqr r r r

b I c I e I I b I c I

b c e b c
σ

+ + + +
=

+ + + +
   (10) 

• models should be based on the stress angle (DESAI, DRUCKER’s cylinder, 

EHLERS, cam-clay model in the FEM-program ABAQUS): 

' / 2 2

2 3 6 eq 3 6(3 ) (1 cos3 cos 3 ) (1 )n n
I c c c cθ θ σ+ + = + + .   (11) 

• the junction of two models with different types of symmetry controlled by 

one parameter only should be possible (MOHR-COULOMB, HAYHURST, 

LIPATOV, YU), e.g. the model of HOEK-BRAUN: 

2 2 2

eq eq[ ( ) ] ( 1) ( ) 0I II I eqdσ σ σ σ σ σ− − + − − = , [1; [d ∈ + ∞ , (12) 

• combined models (z.B. BECKER, COWAN, PAUL, HUBER, KUHN, YU) 

should be built up by intersection of the basic ones. 

Note that some models can reside in several categories. 
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4. Models for Incompressible Material Behaviour 

The most important models for incompressible material behaviour are: SAYIR‘s 

hexagonal prism [1-3] 

1
( ) 0

1
I II III eq

b
b

σ σ σ σ− + − =
+

,  
1

[ ; 1]
2

b∈ −    (13) 

with 1/ 2 2d≤ ≤ , 3 /( 1)k d d= + :and HAYTHORNTHWAITE‘s hexagonal prisms  

' 2 ' ' 2 '

2 3 2 33 3

2 3 2 3

3(2 ) ( 3 ) 3 (3 / 2)
(2 ) 0

1 2( 3 ) / 3 1 2(3 / 2) / 3

eq eq

eq eq

d I I I I
d

σ σ
σ σ

  + − +
− − =    + − +  

 (14) 

with two regions 1/ 2 1d≤ < , 2 / 3k d=  and 1 2d≤ ≤ , 2 / 3k = . These 

restrictions arise from the convexity condition. 

Each „classical“ model for incompressible material behaviour (VON MISES, 

TRESCA, SCHMIDT-ISHLINSKY-HILL, dodecagonal prism due to SOKOLOVSKIJ) 

corresponds to a single point in the k d−  Diagram. All these models represent 

some very special cases of material behaviour and hence are not flexible enough 

to be fitted, if numerous measurements are available. 

The models with hexagonal symmetry (DRUCKER’s cylinder, bicubic model (7), 

hexagonal prism due to YU) restrict the material behaviour to the case 1d = , 

which is often not founded by an experimental evidence. The triangular prism due 

to SAYIR, Eq. (6) does not have this drawback. 

The model Eq. (10) contains the convex cylinders due to FREUDENTHAL and 

DRUCKER. The model due to SPITZIG is not convex. The latter three models are 

not suitable for a general application.  

For applications the geomechanical model Eq. (11) with 6n =  can be 

recommended. The convexity condition yields [3]: 

6 3

1
( 2 )

4
c c= + ,  

6 3

1
( 2 )

4
c c= − , 2

6 3
3

1 1

313
c c= − .  (15) 

The convexity region of the triquadratic model Eq. (8) in the k d− -space is “a bit 

smaller” than the convexity region of the geomechanical model with 6n = . The 

computation of the equivalent stress 
eqσ  can be done explicitly according to Eq. 

(11), therefore the model can be recommenden for applications.  
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5. Compressible Generalisation 

The models for incompressible material behaviour allow a compressible 

generalisation using the transformation of SAYIR: 

1 1

11

eq

eq

Iσ γ
σ

γ

−
→

−
.        (16) 

The models Eq. (7) and Eq. (8) can be extended to the compressible behaviour 

using the transformations [1, 3] 

1 1 2 12

1 21 1

eq eq

eq

I Iσ γ σ γ
σ

γ γ

− −
→

− −
,      (17) 

1 1 2 1 3 13

1 2 31 1 1

eq eq eq

eq

I I Iσ γ σ γ σ γ
σ

γ γ γ

− − −
→

− − −
.     (18) 

The parameters 
iγ  describe the position of the hydrostatic nodes ( 0'

3

'

2 == II ). 

They are subjects to certain restrictions, which depend on the material. 

In order to apply the transformation rule Eq. (18) to the geomechanical model Eq. 

(11) the right hand side of the model should be represented in the form 3 2( )eqσ . 

Thus the model becomes suitable for a large variety of isotropic materials: 

2
2

1 1 2 1 3 1' 3 3 6
2

3 6 1 2 3

1 cos3 cos 3
(3 )

1 1 1 1

eq eq eqI I Ic c
I

c c

σ γ σ γ σ γθ θ

γ γ γ

 − − −+ +
=   + + − − − 

. (19) 

Unlike the well-known and wide-used models (e.g MOHR-COULOMB, HAYHURST), 

the type of the symmetry in the π-plane (rotationally symmetric, triangular, 

hexagonal) is not coupled to the compressibility/incompressibility. The resulting 

rotationally symmetric model (
3 6 0c c= = ) provides more possibilities of fitting 

than the quadratic model ' 2

23 eqI σ=  with the transformation rule Eq. (17). 

 

6. Simple Objective Function 

The model (19) can be rewritten in the form 

2
2

1 1 2 1 3 1' 3 3 6
2

3 6 1 2 3

1 cos3 cos 3
(3 ) 0

1 1 1 1

eq eq eqI I Ic c
I

c c

σ γ σ γ σ γθ θ

γ γ γ

 − − −+ +
− =  + + − − − 

. (20) 

Let the left hand side of the equation (20) be denoted by Φ . For a set of 

measurements given in the principal stresses ( , , )i i i

I II IIIσ σ σ , 1...i n=  an objective 
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function can be formulated: 

f 
3 6 1 2 3

1

( , , , , , , , )

n
m

i i i

I II III

i

c c γ γ γ σ σ σ
=

= ΦΣ      (21) 

with 1,2m =  or alternatively 

f |),,,,,,,(|max 32163
..1

i

III

i

II

i

I
ni

cc σσσγγγΦ=
=

.     (22) 

Other values of m  are possible as well, but they are not helpful in applications.  

Now the following optimisation problem can be formulated: 

minimize f
3 6 1 2 3( , , , , )c c γ γ γ .      (23) 

A solution leads to a model, which approximates the measurements ( , , )i i i

I II III
σ σ σ , 

1...i n= . The optimisation problem Eq. (23) is subjected to certain constraints. 

 

7. Restrictons 

The analysis of the experimental results requires restricting the parameters of the 

model in order to obtain physically meaningful solutions. The restrictions arise 

from certain plausibility considerations as well as from the geometry of the 

models and result in: 

• Convexity conditions in the π-plane. For example they yield the restriction 

Eq. (15) in the parameter space (
3c ,

6c ) for the models Eq. (20).  

• The POISSON’s ratio at tension lies in the interval ] 1;1/ 2]plν + ∈ − . This 

constraint is physically meaningful for failure as well as for yield 

behaviour. This constraint can be strengthened for yielding and for ductile 

failure: 

1/ 2el plν ν+ +≤ ≤ .       (24) 

 For brittle failure the inequality 

1 pl elν ν+ +− < ≤         (25) 

is valid [3]. 

• For the materials, which fail at three-dimensional compression (e.g. hard 

foams, ceramics, sintered materials), the POISSON’s ratio at compression 

lies in the interval ] 1;1/ 2]plν − ∈ − . Further a stronger condition pl elν ν− −≤  

can be conjectured: 

For all the other materials (steel, lead, cast iron), which do not fail under 
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three-dimensional compression, the POISSON’s ratio lies in the interval 

[1/ 2; [plν − ∈ + ∞ . From the geometrical considerations it follows: 

el plν ν− −≤ .        (26) 

• The position of the hydrostatic nodes hyda−  and hyda+  is not arbitrary, this 

results in restrictions imposed on the 
iγ . If the material does not fail under 

three-dimensional compression, the following two combinations can be 

recommended for applications: 1 2 [0;1]γ γ= ∈ , 3 0γ =  or 1 [0;1]γ ∈ , 

2 3 0γ γ= = . Closed models can be obtained with the following parameter 

values: 
1 2 [0;1]γ γ= ∈ , 

3 0γ < ; 
1 [0;1]γ ∈ , 

2 3 0γ γ= <  or 
1 [0;1]γ ∈ , 

2 0γ < , 

3 0γ = . All three 
iγ  can have different values; however fitting of the 

models becomes rather complicated.   

An upper boundary for the hydrostatic tensile stress is obtained from the 

cone potential (model of DRUCKER-PRAGER): 

1

1 2

hyd

pl
a

ν
+

+

<
−

.       (27) 

It can be expected for hard foams (cf. the normal stress hypothesis): 

3hyd
a+ ≤ .        (28) 

A restriction for the hydrostatic compression for hard foams can be 

formulated, it has a purely empirical character (cf. the normal stress 

hypotheses in the form of triangular dipyramid): 

2

3

hyda d− ≤ .        (29) 

• Restrictions of the relations 

0k > ,  0d > ,  1/ 3hyda+ > , 1/ 3hyda d− >   (30) 

are self-evident, but sometimes are useful to exclude unphysical solutions. 

• In addition, mixed constraints can be introduced. For instance for foams 

with 1
eq

σ =  and
2 0γ <  the following inequality can be formulated: 

2

1

d
γ ≥ −          (31) 

• For σ +  there are two options: 

- with 
eqσ σ +=  the results of the tension test are distinguished, 

- the equivalent stress 
eqσ  is considered as a free parameter. If the 

statistical scatter in the measurements is large, the relation /eqσ σ +  

has to be restricted, e.g. [0.9;1.1]eqσ ∈ɶ , otherwise unphysical 

solutions can arise. 
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8. Evaluation criteria 

Consider a failure surface, which is given in the form Eq. (4), and a set of 

experimental data in the principal stress space ( , , )i i i

I II III
σ σ σ , 1...i n= . The 

quality of approximation of the experimental data by the surface must be 

evaluated. Three evaluation criteria are discussed (Fig. 1). 

 

Fig. 1. Cone potential in the principal stress space. Three evaluation criteria are discussed: 

           i) minimal distance from the measurement to the surface, 

           ii) minimal distance from the measurement to the line of the plane stress space 0
III

σ = , 

           iii) value of equivalent stress 
eq

σ  is chosen so, that the point P lies on the surface Φ  other 

                model parameters are known and fixed. 

The three criteria described below cannot be used to compute the parameters of 

the model because of their computational complexity. However, they still can be 

used to compare different optimisation criteria (i.e. objective functions Eq. (23) ). 

i) The quality of regression in the principal stress space is evaluated. For every 

measurement the distance to the failure surface in the principal stress space 

),,( IIIIII σσσ  is computed and then averaged over all measurements. That means, 

that for each measurement ),,( i

III

i

II

i

I σσσ , 1...i n=  the optimisation problem 

2 2 2

( , , )
min [( ) ( ) ( ) ]

I II III

i i i

I I II II III III
σ σ σ

σ σ σ σ σ σ− + − + − ,    ….. 

subject to 0),,( =Φ IIIIII σσσ        (32) 

must be solved. The solution is obtained using the LAGRANGE multiplier: 

     2 2 2( , , , ) ( ) ( ) ( ) ( , , )i i i

I II III I I II II III III I II III
F σ σ σ λ σ σ σ σ σ σ λ σ σ σ= − + − + − − Φ . 

Its stationary points are the solutions of the equation 0=∇F . 

The latter equation has multiple solutions, however only the point ( , , )i i i

I II III
z z z  on 

the failure surface, which has the minimal distance to the point ( , , )i i i

I II III
σ σ σ , is 

needed. Since the number of different solutions is small, the point of minimal 
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distance can be found by trial and error. Finally, the value Df3  of the estimation 

computes to 

2 2 2

3

1

1
( ) ( ) ( )

n
i i i i i i

D I I II II III III

i

f z z z
n

σ σ σ
=

= − + − + −∑ .    (34) 

ii) The second way to evaluate the quality of the approximation is to compute the 

minimal distance not in the principal stress space, but for a plane stress state (e.g. 

0=IIIσ ). This criterion makes sense for special experimental data only. The 

optimisation problem (34) is reduced to 

2 2

( , , )
min [( ) ( ) ]

I II III

i i

I I II II
σ σ σ

σ σ σ σ− + − ,  subject to 0)0,,( =Φ III σσ . (35) 

Further proceed analogous to the case i). For each measurement )0,,( i

II

i

I σσ  find 

the point of minimal distance )0,,( i

II

i

I σσ  on the curve ( , ,0) 0
I II

σ σΦ =  and 

compute the value 

2 2

2

1

1
( ) ( )

n
i i i i

D I I II II

i

f z z
n

σ σ
=

= − + −∑ .     (36) 

iii) For a model built up upon the concept of equivalent stress, i.e. 

( , , , ) 0I II III eqσ σ σ σΦ =        (37) 

with += σσ eq , a simple evaluation criterion can be formulated. Whereas, for 

fitting of the model to the measurements, eqσ  is considered to be a parameter. 

The value of eqσ , which was obtained from fitting, is denoted by *

eqσ . In order to 

estimate the quality of approximation, for each measurement ( , , )i i i

I II III
σ σ σ , 

1...i n=  the value i

eqeq σσ =  should be computed with the property, that the 

respective measurement belongs to the surface 0),,,( =Φ i

eqIIIIII σσσσ . The 

equation 0),,,( =Φ i

eq

i

III

i

II

i

I σσσσ  must be solved with respect to i

eqσ  for each 

1...i n= . The value of the estimation computes to 

*
1

1
in
eq

eq

i eq

f
n

σ

σ=

= ∑         (38) 

The criterion i) is ubiquitous and can be applied to any model and any set of 

measurements. However, it is rather often the case, that the measurements are 

provided for a plane stress state, so the criterion ii) matches with the nature of the 

measurements much better than i). It is based on the assumption that the 

measurements, which belong to a plane stress state, are to be approximated by 

points on the model, which also belong to a plane stress state. The criterion iii) 

can be applied to the models based on the concept of equivalent stress only. 
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Further iii) can be expanded so that comparison is made for a distinguished stress 

state (e.g. torsion, compression, etc.). 

 

11. Summary 

The analysis of the stress hypotheses leads to six new modelling principles. 

According to that principles new formulations for the models were found, see Eq. 

(7), (8), (10), (11). However, the model Eq. (11) only satisfies the plausibility 

conditions. Compressible generalisation of Eq. (11) yields the model Eq. (20). 

The rotational, triangular or hexagonal symmetry in the deviatoric plane can be 

obtained independently from the compressibility.  

The model Eq. (20) was chosen for the analysis of the measurements. The routine, 

which computes the values f, 3Df , 2Df  and 
eqf , was programmed in the CAS 

MATHEMATICA. The function NMinimize can be used in order to find the 

solution of the optimisation problem (23). The optimisation routine can be iterated 

in order to find the value ] 1;1/ 2]plν + ∈ −  such that one of the values 3Df , 2Df  or 

eqf  is minimal. The second condition in Eq. (15) was replaced by 
10 2

6 3 3( 1 10 ) / 4c c c
−≤ − − , so that numerical computation becomes less complex. 

For the measurements of a hard thermoplastic foam EPP-78 (closed surface Φ ) 

and non-reinforced thermoplastic PMMA (surface with hyd
a− → ∞ ) different 

solutions were found, which could be compared using the criteria suggested here. 

Furthermore for the obtained solutions the values 3Df , 2Df  and 
eq

f  are computed 

and then such solutions are taken, for which two or three of the computed values 

are minimal (PARETO-solutions). 
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