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Abstract: IN738LC is a cast polycrystalline nickel based super alloy, primarily 

used for first stage gas turbine blades which operate under severe loading 

conditions and temperatures. The development of relationship among operating 

temperature, microstructure and mechanical properties of the material is very 

important in order to understand its failure mechanisms and fracture behavior. For 

this purpose, this paper presents a three layered feed forward back propagation 

neural network model capable of predicting the fracture energy of IN738LC. 

Temperature, strain rate, gamma prime precipitate size, yield strength, ultimate 

tensile strength and percentage elongation to failure taken from literature are used 

to train, validate and test the model. Results obtained from the neural network 

model describe experimental values accurately for given operating conditions. 

Therefore, it can be used to correlate microstructural parameters to strength and 

toughness properties under real operating conditions. 

 

1. Introduction 

 

Gas turbines and aerospace engines operate at high temperatures and under severe 

thermal and mechanical loading conditions which can result in failure of the 

material. Temperature, mechanical properties (yield strength, tensile strength etc) 

and microstructure of materials used at high temperatures are fundamental 

parameters in the design and assessment of aerospace components. Such 

components, particularly gas turbine blades, are usually made of the cast 

polycrystalline nickel base superalloy IN738LC (Inconel 738 Low Carbon). The 

intermetallic gamma prime (γ’) precipitates, (Ni3Al/Ti/Nb), are the main 

hardening particles within the gamma (γ) matrix. The size, morphology and 

thermal stability of the γ’ precipitates are determining factors for all high 

temperature properties of the material [1]. The desired γ’ precipitate structures 

such as fine (F), medium (M), coarse (C) and duplex (D) can be obtained by 

different heat treatments. For instance, simple solution heat treatment at 1200
ο
C 

for 4 hours followed by water quenching (WQ) produces fine precipitates. 

Reheating and maintaining solution heat treated samples at 900
ο
C and 1120

ο
C for 

another 24 hours result in medium and coarse size precipitates, respectively. 

Reheating the coarse precipitate material for an additional 6 hours at 1140
ο
C 

results in a duplex microstructure in which the coarse-sized precipitates are 

partially dissolved into the matrix creating fine secondary precipitates [2]. In the 

context of this paper, these microstructures obtained at different conditions of 

temperature can be correlated to strain rates, mechanical properties and fracture 



energy (fracture toughness), or the energy to break the material. At low strain 

rates, fine and duplex precipitates show higher yield strength, but lower fracture 

energy as compared to medium and coarse precipitates due to easy occurrence of 

a cleavage type fracture on the {100} planes at low temperature and on the {111} 

slip planes at high temperature. At high strain rates, there is an increase in fracture 

energy at 650
ο
C. Above this temperature, the fracture energy decreases 

drastically. The degree of toughness drop or increase greatly depends on the type 

of microstructure. Coarse precipitates show the highest fracture energy at 650
ο
C 

probably due to either the highest ductility associated or of the specific vacuum 

heat treatment used for the production of this microstructure that prevents 

oxidation during heat treatment. Medium and coarse precipitate microstructures 

generally show more dimple-ductile type fracture at all temperatures which can 

well be correlated to higher fracture toughness values. In contrast, fine and duplex 

precipitate structures show lower toughness values and cleavage type fracture [3]. 

 

Various quantitative models can be useful in determining the fracture energy, 

assisting in the prediction of fracture behavior of nickel based super alloys and 

reducing the need for experimental work. A neural network is one of the most 

promising methods in achieving this goal [4].  

 

An artificial neural networks is used in the current paper. It is a computer 

intensive blind modeling technique [4]. It is a fast, flexible, efficient and accurate 

tool to predict and model highly nonlinear multidimensional relationships. Due to 

flexible modeling and learning capabilities of neural networks, it is possible to 

solve complex problems without any mathematical relationships between inputs 

and outputs. Neural networks is presently successfully used in a wide range of 

applications such as medical, military, space, and much more [5]. 

 

2. Neural Networks 

 

An artificial neural networks works in accordance with the human brain. It has 

nonlinear basic processing units called neurons. These neurons are connected by 

weights and biases and are arranged into layers [6]. Basically, the neural network 

architecture consists of multiple layers of neurons, i.e. an input layer, an output 

layer and one or more hidden layers between them. The number of neurons in the 

input layer is determined from the number of input variables. The neurons in the 

hidden layer are determined by trial and error with various weights and biases, 

whereas the number of targets (or the output to be determined) is considered to be 

the number of neurons in the output layer. Generally, underfitting occurs if the 

hidden neurons are too few and too many neurons causes overfitting because the 

network is very sensitive to the number of neurons in the hidden layers and can 

cause strong oscillations [7].  

 

The most commonly used neural network architecture is multilayered feed 

forward back propagation because it requires smaller training sets, is easy to 

implement and execution time is low. The back propagation training set has input 



vectors and corresponding target vectors [7]. It has two phases during training, 

mainly, the forward phase and the backward phase. In the forward phase, the 

input vectors of the training set are moved forward through the network layers. 

The output is computed by the network for each input in the training set. The error 

or difference between the target (actual expected output) and computed output is 

determined. In the backward phase, the error is subsequently back propagated 

from the output layer to the hidden layers and weights and biases are updated. 

This process is repeated many times until the error is minimal for the network for 

the defined goal, epoch or other parameters [5]. 

 

During training, the error in a specific training set can be small, but the error can 

still be very large when new input data are fed to the network. This is called 

overfitting and can be avoided by dividing the total data set into three subsets: a 

training subset (50% of the total data set), a validation subset (25% of the total 

data set), and a test subset (25% of the total data set). The training subsets are 

used to compute the error and update the network weights and biases, i.e. to train 

the network. Initially, the error in both validation and training subset decreases, 

but as the error in the validation subset begins to rise after a specified number of 

iterations in cases where the network overfits the data and the training is stopped 

at that point. In this way, the validation data set plays a major role to avoid 

overfitting. The test subset is used to assess the generalization error and to 

compare the results [7]. 

 

Feed forward Levenberg-Marquadt back propagation algorithm, a numerical 

optimization technique, is used in the present work to iteratively update the 

weights and biases to minimize the error i.e. mean squared error (MSE) which is a 

performance function of this algorithm. Levenberg-Marquadt algorithm is a 

variation of the Newton’s method by introducing the new scalar parameter µ 

(mu). The training parameters for this training algorithm are epochs, show, goal, 

mu, mu_dec (µ decreased), mu_inc (µ increased), mu_max (µ maximum), 

mem_reduc (memory reduction) etc. The training status is displayed in every 

show. The most important parameter is mu which is decreased or increased to 

reduce the performance function during training of the network. Training stops 

when some predefined conditions are met i.e. mu becomes larger than mu_max, 

the number of iterations exceed epochs, the performance function reaches the 

goal, etc. Levenberg-Marquadt back propagation algorithm is the fastest training 

algorithm available. But, it also requires a lot of memory when the training set is 

large. Therefore, the parameter mem_reduc is used for the reduction of memory 

requirement [7]. 

 

3. Neural Network Modeling 

 

In this paper, an artificial neural network (ANN) model based on experimental 

data is developed to predict average static fracture energy of IN738LC. The 

experimental data set in Table 1 is used as inputs and target for training. 

Temperature, stain rate, tensile properties (yield strength, ultimate tensile strength, 



and percentage elongation to failure) and microstructure (including both primary 

and secondary precipitate size) of four different γ’ precipitate structures are the 

inputs. The average static fracture energy obtained from tensile load-displacement 

test for different strain rate and temperatures is taken as the target [3].                                                          

   

                       Table 1: Inputs and Target values for IN738LC [3] 

 

                                 INPUTS       TARGET 

Microstructure Temperature Strain 
Rate 

Yield 
Strength 

Tensile 
Strength 

Elongation Fracture 
Energy 

 (
0
C) S

-1
 σY (MPa) σT (MPa) (%) (Joule) 

Fine  (F) 20-850 5 10
-5

 552-859 553-965 4.7-11.2 6.0-14 

70nm 20-850 10
-3

 684-852 685-916 4.7-16.0 9.0-58 

       

Duplex (D) 20-850 5 10
-5

 634-834 654-913 5.1-12.1 9.0-38 

(50 and 450 nm) 20-850 10
-3

 762-859 787-1031 5.3-12.9 12.0-70 

       

Medium (M) 20-850 5 10
-5

 511-681 604-883 8.9-19.6 28-70 

~450nm 20-850 10
-3

 582-710 740-850 11.5-16.0 33-53 

       

Coarse (C) 20-850 5 10
-5

 479-701 590-821 11.8-26.4 39-99 

700 nm 20-850 10
-3

 588-712 698-899 15.5-24.5 59-90 

       

 

 

The optimal neural network architecture used in this study, including inputs and 

output (target), is shown in Figure 1. 

 

 

 
                               

  Fig 1: Neural Network Back Propagation Architecture 

 

The MATLAB Neural Network Toolbox is used for optimization of the neural 

network architecture. Both input and target data are normalized before training to 

get efficient results. The Trainlm training function which corresponds to the 
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Levenberg-Marquadt algorithm is used to train the network. The network is 

trained with 32 data points in total, e.g. 8 data points for each fine, duplex, 

medium and coarse γ’ precipitate structure. For each structure, half of the data are 

for the low and half for the high strain rate To avoid over fitting, as explained 

above, total data are divided into three parts: the training (16 data points), the 

validation (8 data points) and the testing (8 data points). The error goal is set to 

zero and the network is trained until the actual minimum error is obtained.  Once 

the model is well converged  i.e. the error is minimum, the testing data subset 

results are compared to corresponding experimental values at both strain rates for 

all precipitate microstructures.  

 

4. Results and Discussions 

 

The final network architecture consists of three layered feed forward back 

propagation neural network with one input layer, one hidden layer and one output 

layer. After a number of trials, the most suitable architecture obtained is 7-11-1, 

which means 7 neurons in input layer, 11 neurons in hidden layer and one neuron 

in output layer. Fig. 2 shows curves for the convergence characteristics of 

training, validation and testing data subsets, respectively. The performance is 

1.63417e
-021

 which is almost close to zero goal.  
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                             Fig 2: Convergence characteristics of training pattern. 

 

Fig. 3 is the mean squared error vs. epoch curves for training, validation and 

testing data subsets, respectively. Initially, the mean squared errors for both 

training and validation data decrease and then becomes constant and the training 

stops at 8 epochs. It can be seen from this figure that the testing curve also follows 

the same pattern, which indicates that no overfitting occurred and the network is 

properly trained.  
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         Fig 3: Mean Squared Error for training, validation and testing data subsets 
 

As the model is well developed, model outputs (testing results) are compared with 

measurement data (fracture energy). Fig. 4 and 5 show a very good match 

between measurement data and the modeling results at low (5 10
-5 

S
-1

) and high 

(10
-3

 S
-1

) strain rates, respectively. Data for all precipitate structures, fine (F), 

duplex (D), medium (M) and coarse (C), are summarized in both figures. This 

excellent modeling result opens new potential in design and assessing 

performance and damage of critical components. Due to existing direct 

correlations between fracture energy, γ’ precipitate structure and failure mode, the 

model can not only be used to assess material strength and toughness, but also to 

predict the failure mode.        
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) strain rate. 

 
                       
        
 
 



           

Fracture Energy at High Strain Rate 
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     Fig 5: A chart for fracture energy at (10
-3

 S
-1

) strain rate. 

 

5. Conclusion 

 

A new model based on feed forward Levenberg-Marquadt back propagation 

neural networks is successfully applied to IN738LC to determine the fracture 

energy. The proposed model uses application temperature, strain rate, 

microstructure and common mechanical properties such as yield strength, ultimate 

tensile strength and percentage elongation to failure as inputs. The neural network 

results are very consistent with the actual fracture energy values obtained from 

experimental measurements. As the fracture energy can be directly related to 

γ’particle structure and failure mode, the model can also be used to predict the 

failure mode of components. 
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