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Abstract: In this work, a semi-analytical method is presented for the problem of a 
pre-existing radial Griffith crack embedded within the interphase layer 
surrounding a circular inclusion.  Novel to this work is that the bonding at the 
inclusion-interphase interface and the interphase-matrix interface is considered to 
be imperfect with the assumption that the interface imperfections are constant.  
Employing complex variable techniques, we derive series representations for the 
corresponding stress functions inside the inclusion, in the interphase layer and the 
surrounding matrix. The advantage of the series method over other methods, such 
as the dislocation density method, is that in the former case the resulting 
expressions are linear and can be solved readily whereas in the latter case the 
method leads to cumbersome integral equations which are often numerically 
difficult to solve.  Stress intensity factor (SIF) calculations are performed at the 
crack tips for different material property combinations, imperfect interface 
conditions and crack locations under mode I loading. The results not only provide 
for a quantitative description of the interaction between a radial interphase crack 
and a three-phase inclusion with imperfect interfaces but the results clearly 
demonstrate the significance of how two imperfect boundaries can influence crack 
behaviour. 
 
 
1.0 Introduction 
 
 
With the rapid development of sophisticated multi-phase materials the interaction 
between material defects and so-called coated inclusions are becoming 
increasingly important in the manufacture of composite materials.  The 
performance of these advanced materials depends not only on the properties of the 
constituent phases but also on the quality of adhesion that exists between matrix 
and fiber.  In fact, when the matrix bonds to the fiber surface a thin intermediate 
zone commonly known as the interphase layer is created.  Alternatively, this 
interphase layer can be introduced as a separate material during the design stage 
so as to tailor the performance of the advanced material to any particular 
condition.  In any case, the interphase layer can be defined as a non-uniform, 
anisotropic region of finite thickness consisting of structural defects (such as 
microcracks, voids and other impurities) and having distinct mechanical 
properties as compared to fiber or matrix. 
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In the last several years a tremendous amount of work has been devoted to 
understanding the mechanical behaviour surrounding the interaction problem 
between material defects and three-phase inclusion systems (see, for example, [1-
4]).  However, the limitations of the aforementioned works are primarily based on 
the assumption of perfect bonding between all constituent boundaries.  In many 
practical problems various kinds of interface damage (such as interface 
debonding) makes the perfect bonding model inadequate.  In these kinds of 
situations, it becomes necessary to model the interface as an imperfectly bonded 
interface.   
Recently, Kim and Sudak [5] addressed the problem of a three-phase circular 
inclusion with an imperfect interface interacting with a radial matrix crack.  They 
showed that having an imperfect inclusion/interphase interface significantly 
affects the stress intensity factors of the radial matrix crack.  While these results, 
with only one imperfect interface, are important in the design of advanced 
materials, it is conceivable and practically relevant that composite materials, in 
particular, fiber-reinforced materials could contain two or more imperfect 
interfaces (see, for example, [6]).   
In the present work, a general semi-analytical approach is developed which, for 
the first time, takes into account simultaneously the effects of two imperfect 
interface conditions and their subsequent effect on a pre-existing crack located in 
the interphase layer.  The results clearly demonstrate the significance of the 
interphase layer as well the influence of imperfect material interfaces on crack 
behaviour for a variety of material property combinations, crack positions and 
crack size.  It should be noted that the advantage of the current series method as 
compared to the dislocation density method used model crack problems is that in 
the former case the series method is simple and easy to use whereas in the latter 
case it is often cumbersome and numerically challenging to implement.   
 
 
2.0 Formulation 
 
 
Consider a domain in R², infinite in extent, containing a single circular inclusion 
which is bonded to a matrix through a single coaxial circular interphase layer.  
The linearly elastic materials occupying the inclusion, the interphase layer and the 
matrix are assumed to be homogeneous and isotropic with associated shear 
moduli μ₀(>0), μ1(>0) and μ2(>0), respectively.  The inclusion, with center at the 
origin of the coordinate system and radius R₀, occupies a domain denoted by S₀.  
The interphase layer, with radius R₁is denoted by S₁and contains a pre-existing 
radial Griffith crack of length 2l.  The surrounding matrix is denoted by S2. The 
inclusion-interphase interface and the interphase-matrix interface are denoted by 
the curves Γk(k=0,1), respectively (see Figure 1).  Furthermore, unless otherwise 
stated, the subscripts 0,1,2 will be used to denote quantities in S₀, S₁and S2, 
respectively. 
 
 



 

 
Figure1.  Geometry of the problem 

 
Let (x,y) denote a generic point in R² and z=x+iy=reiθ the complex coordinate.   
Then for plane deformation, the elastic stresses and associated displacements can 
be given in terms of two potential functions Ԅ(z) and ψ(z) as [7] 
 

 
where κ = (3-4ν) for plane strain and κ=(3-ν)/(1+ν) for plane stress.  Here μ and ν 
are the shear modulus and Poisson's ratio, respectively.  In addition, the resultant 
force acting on an arbitrary arc AB in the elastic body is given by [7] 

 (1)

 
where ሾ݂  is independent of the path. ሺכሻሿ ൌ ݂ሺܤሻ െ ݂ሺܣሻ
In order to describe the variability in bonding at the inclusion-interphase layer 
interface and the interphase layer-matrix interface one of the more widely 
accepted mechanical descriptions is based on the premise that tractions are 
continuous but displacements are discontinuous across the interface (see [8]).  In 
this context, the displacement jumps are assumed to be proportional to their 
respective traction components.  In view of this, the corresponding boundary 
value problem along Γ₀ and Γ1 can be formulated as follows 
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where m and n are non-negative and constant interface parameters.  Physically, 
these parameters characterize the strength, stiffness and overall degree of 
adhesion along the material interface and they are described by a simple 
constitutive relationship (for details see [9]).  The expressions ԡכԡ=ԡכԡ₁-ԡכԡ₀ 
and ԡכԡ=ԡכԡ₂-ԡכԡ1  denote the jump across Γk,(k=0,1).  In addition, we note 
that if m₀=n₀→0 and m1=n1→0 (Eq.3) represent the traction free boundary 
condition and if m₀=n₀→∞ and m1=n1→∞ (Eq.3) corresponds to perfectly 
bonded interfaces.  Hence, in view of (Eqs.1-2), the boundary value problem can 
be expressed in terms of six complex analytic functions Ԅi(z) and ψi(z) (i=0,1,2) 
as follows   
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In addition to the boundary conditions given by (Eq.3), the traction free condition 
at the crack face via (Eq.2) is given by 



 
where the ‘+’ and ‘-‘ refers to the  upper and lower crack face respectively.  Note 
that all functions appearing on both sides of (Eqs. 4-5) have been written with the 
understanding that they may be represented as power series expansions in the 
variable z.  Thus, (Eqs.4-5) require that the series expansions on both sides have 
the same coefficients. Furthermore, the remote loadings are defined as 

       (5)

 

 
where A is a given real number and B is a given complex number determined by 
the uniform remote principal stresses 

       (6)

        (7)
 

 
2.2 SERIES REPRESENTATION 
 
 
A convenient method to analyze problems with circular boundaries is the series 
method.  Let us now consider the functions Ԅ₀(z) and ψ₀(z) defined in S₀.  They 
are analytic within the inclusion and as such can be expanded in a standard Taylor 
series in the domain S₀ as follows 
 

 
The next pair of complex functions those being Ԅ2(z) and ψ2(z) are analytic in S2 
and can subsequently be expressed as Laurent series in the domain S2 as follows 

       (8)

 
The remaining set of complex functions, namely Ԅ1(z) and ψ1(z) are not analytic 
in the domain S1 due to the presence of the crack.  Thus, the conventional Laurent 
series is not applicable. To overcome this difficulty, the technique of analytic 
continuation is employed so that these potentials can be expressed in terms of two 
new complex functions which are analytic inside S1 and can subsequently be 
expanded with standard series methods.  Let Ω denote the domain S1 minus the 
crack; in other words, Ω represents the annular region between Γ₀ and Γ₁minus 
the crack.  So then from (Eqn. 5) we have that 
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Thus, as we approach the crack from either the upper or lower half plane, the 
above equality is satisfied which implies the function is continuous across the 
crack.  Hence, let us define a new function, say X(z), in S1 as 
 

   
Then it is clear from (Eqn. 11) that X(z) is continuous across the crack and regular 
in Ω.  Consequently, it can be expanded into a Laurent series in Ω 

      (11) 

In addition, if we add the expressions in (Eqn. 5) we obtain 
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Noting that the each term on the left hand side is always finite then using 
Plemelj’s expressions [7] we can define a second function, say Y(z), such that 
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Thus, X(z) and Y(z) are two new analytic functions which are continuous across 
the crack and analytic in Ω.  Consequently, they can be expanded into a Laurent 
series in Ω as 

        (14)

Note that the term F(z)=1/(2√(z-a)(z-b)) in (Eq. 13) is a multi-valued function 
across the crack but analytic in the domain Γ₀ ∪ Γ₁∪ S1.  Consequently, it can 
be expanded on the interfaces in a conventional series.  Thus, F(z) can be defined 
as follows  

 

 
where the complex coefficient gk and h-k are determined in terms of the crack tip 
positions, a and b.  Further, using the expansion of F(z) we can expand Ԅ1(z) and 
ψ1(z) at both interfaces as infinite Laurent series in the variable z. Thus, having 
expressed all six analytic functions in series form, the problem is reduced to a 
determining the unknown coefficients ak, bk, ck, dk, ek and fk such that the interface 
conditions (Eqs. 4-5) are satisfied. 

       (15)



 
 
3.0 NUMERICAL ANALYSIS and DISCUSSION 
 
 
Since the stress intensity factor is characterized by the elastic stress distribution 
near the crack tip, it is reasonable to assume that it is a suitable parameter for 
predicting whether a crack will propagate or not.  In view of this and only 
considering leading order terms it follows that the mode I stresses in the 
neighbourhood of crack tips a and b are respectively 
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Note that by the simple nature of the constructions of the function Y(z) the remote 
loading terms are not explicitly shown in (Eqs. 16-17).  In fact, the remote 
loadings as well as the geometric and material parameters are incorporated within 
the expressions for the fk's. 
The numerical analysis rests in determining the unknown coefficients ak, bk, ck, dk, 
ek and fk.  To achieve this, the series representation for the six analytic functions 
Ԅi(z) and ψi(z) ( i=0,1,2) are substituted into the interface conditions.  Knowing 
that a power series converges uniformly for any point z inside and on any circle 
about the origin which lies entirely inside its circle of convergence then, with 
negligible loss of accuracy, one can conveniently truncate the infinite series for a 
given number of terms.  This naturally yields four truncated series expressions 
from which a set of linear algebraic equations can be obtained by comparing 
coefficients corresponding to the powers of z.  In this work, 38 algebraic 
equations for 38 unknowns are generated by comparing coefficients of powers of 
z ranging from z⁵ to z⁻4.  For convenience let us introduce the following non-
dimensional parameters M₀=((m₀+n₀)/(2μ1))R₀ and M1=((m1+n1)/(2μ1))R₁ 
describing the two imperfect interfaces and let us select the crack length to be 
fixed of length l=R₀.  Here very small values of M₀ and M1 (say M=0.01) 
corresponds to a debonded inclusion and large values of M₀ and M1 (say M≥100) 
corresponds to a perfect bonding condition.  Values in-between reflect imperfect 
bonding conditions.  In addition, let us define a normalized mode I stress intensity 
factor as KI/K I  w/o  inclusion at crack tips a and b.  Here KI =σyy√(2πr) is the stress 
intensity factor calculated according to (Eqs. 16-17), respectively while K I  w/o  



inclusion =σ∞√(πl) is the mode I SIF for the same crack in a homogeneous material 
minus the inclusion. 
As a check of our method, let us simulate the case when both interfaces are 
perfect (i.e. M₀= M₁= 100) and thermal effects are ignored.  Figure 2 shows the 
SIF as a function of μ2/μ1 for our method and that of Luo and Chen [10] under 
identical conditions.  It is clear our results are consistent and in good agreement 
with those of [10]. 
 

 
Figure2.  Verification of present model  

 
In all of the works reviewed, there has not been a discussion regarding the 
interaction between two imperfect interfaces and a crack.  Figure 3 illustrate the 
changes of the normalized mode-I SIF at crack tips "a" and "b" respectively for 
various imperfect bonding conditions corresponding to a stiff inclusion.  The 
results show that as the distance between the crack and the inclusion-interphase 
interface increases the SIF for crack tip "a" decreases whereas the SIF increases 
slightly for crack tip "b".  This suggests that for a crack located close to the 
inclusion-interphase boundary there is a tendency for the crack to propagate from 
both crack tips.  On the other hand, for highly imperfect interface conditions (say 
M₀=0.1), if the crack is located at some distance from the inclusion-interphase 
boundary, say d/R₀=2.0, then the SIF at crack tip "a" is less than 1 whereas the 
SIF at crack tip "b" is larger than 1 indicating that crack extension will initiate 
from crack tip "b" and move towards the surrounding matrix.   



 
Figure 3.Influence of two imperfect interfaces (Γ₀ and Γ1) and crack position on 
the normalized SIFs 
 
The effect of material stiffness, in particular interphase layer stiffness, has a 
significant effect on crack behavior.  Figure 4 illustrates the effect of interphase 
stiffness and bonding conditions at the interphase-inclusion interface on crack 
behaviour.  The results show that the normalized SIF values increase as the 
stiffness of the interphase layer increase.  This suggests that a stiff interphase 
layer has a tendency to promote crack extension from both crack tips. 

 
Figure 4. Influence of interphase layer stiffness and imperfect interface (Γ₀) on 
the normalized SIF for fixed crack position d/R₀=0.40 



4.0 CONCLUSIONS 
 
 
Since the extension of the dislocation density method to study three phase 
inclusion-crack interaction problems with imperfect interface is difficult and 
numerically challenging, a simple semi-analytic solution to the interaction 
between a pre-existing radial crack and a three-phase circular inclusion with two 
imperfect interfaces is presented.  The numerical results clearly reveal the 
significance of two imperfect interface conditions and their impact on the stress 
intensity factor for a crack. 
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