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Abstract Cracking in D6ac steel has played a key role in the development of the
damage tolerant design philosophy. Until recently it had been thought that
cracking in D6ac steel was well understood. However, Forth et. al. [1] have
recently reported that crack growth data obtained by NASA for D6ac steel
revealed that there was little R ratio dependence in the Paris Region and that there
was thus little, if any, crack closure. In this paper we reveal how the NASA data
conforms to the Generalised Frost-Dugdale crack growth law. We then show how
the average block variant of the Generalised Frost-Dugdale law can be used to
predict the growth of small cracks in a USAF study into crack growth in D6ac
steel specimens representative of the critical region of F-111 wing pivot fitting.

1. INTRODUCTION

Cracking in D6ac steel has played a key role in the development of the damage
tolerant design philosophy. Indeed, the USAF adoption of a damage tolerant
design philosophy arose from an in-flight failure, on December 22 1969, of an F-
111 aircraft which lost a wing while on a training flight. The failure was found to
originate on the lower tension surface of the D6ac steel wing pivot fitting. A
Scientific Advisory Board assembled for the F-111 investigation subsequently
recommended that a damage-tolerant design methodology be used for all future
aircraft. These new design concepts were subsequently incorporated into MIL-
STD-1530, Aircraft Structural Integrity Program, Airplane Requirements.

Until recently it had been thought that cracking in high strength aerospace quality
steels was well understood. However, Forth, James, Johnston, and Newman [1]
reported that crack growth data obtained for 4340 steel using CT specimens was
essentially R ratio independent. Similarly crack growth data obtained for D6ac
steel using CT specimens, exhibited an apparently anomalous behaviour in that
whilst there was essentially no R ratio dependence in the Paris Region, i.e. Region
II, the da/dN v K relationship was R ratio dependent in Region I. This study led
Forth, James, Johnston, and Newman to state: “there is little closure in high
strength steels” and “This data also does not follow the crack closure argument.”
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Forth, Johnston, and Seshadri [2] subsequently reported that in Region I D6ac
steel crack growth data obtained using different ASTM standard specimen
geometries tested under the ASTM constant R ratio load reducing method gave
different da/dN v K relationships. The implication of the latter finding was that,
in Region I, similitude did not hold for ASTM constant R ratio load reducing
tests. Indeed, Forth, Newman, and Forman [3] have shown that the ASTM
constant R ratio load reducing test procedure generates Region I crack growth
data that are inconsistent with the true material response.

At this stage it should be noted that Frost and Dugdale [4] reported that there was
little R ratio dependency in mild steels, and that Jones, Pitt, and Peng [5] have
show that there was little R ratio dependency in a 350 MPa Grade locomotive
steel. Jones, Pitt, and Peng [5] also revealed that crack growth in this particular
350 MPa Grade locomotive steel conformed to the Generalised Frost-Dugdale law
[6], i.e. Equ. (1):

da/dN = C* a(1-/2) () - (da/dN)0 (1)

where , is the crack driving force, C*, and  are constants and the term
(da/dN)0 reflects both the fatigue threshold and the nature of the notch
(defect/discontinuity) from which cracking initiates. (The link between this law
and the fractal concepts of Carpenteri [7] and Spagnoli [8] is outlined in [6].)
Indeed, Jones, Chen, and Pitt [9] have shown that a large crossection of rail steels
also conform to the Generalised Frost-Dugdale law. As a result the purpose of this
paper is to evaluate whether cracking in D6ac steel, used in the NASA space
shuttle [10], reported in [11] follows the Generalised Frost-Dugdale law. This
investigation shows that there is a simple linear relationship between da/dN and

a(1-/2) () that holds over five orders of magnitude, viz: 10 -8 mm/cycle < da/dN
< 10 -3 mm/cycle.

2 CRACKING IN D6AC STEEL

Forth, James, Newman, and Everett [11] presented the results of an extensive study
into crack growth in D6ac steel using compact tension test specimens. This paper
focuses on cracking in the LT direction under both constant Kmax, and constant R
ratio load increasing tests. Details of the various tests are given in Table 1.
Analysis of the test data revealed that crack growth conforms to the Generalised
Frost-Dugdale crack growth law, i.e. Equ. (2):

da/dN = 8.12 x 10 -9 * a(1-/2) () - 2.79 10-7 (2)

with  = 2.6, and where as per Walker [12] we have defined the crack driving
force as per Equ. (3):
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 = Kmax
(1-p)

K
p

(3)

where a value of p = 0.95 was found to best collapse the data. This low value of p
shows that the increment in the crack length per cycle (da/dN) is essentially no R
ratio independent. This finding is also seen in Figure 2, where we show the da/dN

versus (Kmax
0.05


0.95

) relationship. Indeed, Figure 1 shows that there is a

simple linear relationship between da/dN and (Kmax
0.05


0.95

)/ a0.3 that holds
over five orders of magnitude, viz: 10 -8 mm/cycle < da/dN < 10 -3 mm/cycle.
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Figure 1 Generalised Frost-Dugdale representation of crack growth.

Table 1 Test matrix
Test frequency Hz

Ct3-5-tl Constant Kmax (=15 MPa √m) test 18
Ct3-10b-lt Constant R=0.3, Load increasing 20
Ct3-12-lt Constant R=0.9, Load increasing 20
Ct3-25-lt Constant R=0.7, Load increasing 20
Ct3-27-lt Constant R=0.9, Load increasing 22
Ct3-29-lt Constant R=0.3, Load increasing 10
Ct3-46-lt Constant R=0.1, Load increasing 20
Ct3-47-lt Constant R=0.8, Load increasing 10
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Figure 2 Crack growth in D6ac steel.

3. AN EQUIVALENT BLOCK METHOD FOR PREDICTING FATIGUE
CRACK GROWTH

It is now known that the mechanisms underpinning crack growth under variable
amplitude load may differ from those seen under constant amplitude loading
[13]. We also know [1] that cracking in D6ac steel is not consistent with the
crack closure hypothesis. The question thus arises how can we predict crack
growth under complex variable amplitude loading if we can’t use crack closure
based models, or models such as modified Willenborg model that use changes
in crack growth resulting from changes in the effective R ratio to model
sequence effects ? (In the latter case since there is essentially no R ratio effect,
see Figures 1 and 2, then approach this can’t be used to account for sequence
effects.)

At this stage it is worth noting that Schijve [14], Miedlar, Berens, Gunderson,
and Gallagher [15], Barsom and Rolfe [16] and Miller, Luthra, and Goranson
[17] have shown that repeated blocks of loads can, in certain circumstances, viz:

i) the slope of the a versus block curve has a minimal number of
discontinuities,
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ii) there are a large number of blocks before failure,

be treated as equivalent to load cycles. With these assumptions Jones, Molent
and Krishnapillai [18] derived an “equivalent block” variant of the Generalised
Frost-Dugdale crack growth law to account for the increment in the crack length
per block, da/dB, i.e. Equ. (4):

da/dB = ( C
~

a1- /2 Kmax
 - da/dBo)/(1.0 - Kmax/Kc) (4)

Here a is the average crack length in the block, C
~

is a spectra dependent constant,

Kmax is the maximum value of the stress intensity factor in the block, and Kc is the
apparent cyclic fracture toughness. Here, as described in [18], the term da/dBo

reflects the both nature of the discontinuity from which the crack initiates and the
apparent fatigue threshold for this particular block loading spectra. However, it
should be stressed that this variant of the Generalized Frost-Dugdale law is only
applicable to crack growth data where the slope of the a versus Block curve has
minimal discontinuities, and there are a large number of blocks to failure, see
[18].

In the next section we present an example that illustrates how this approach, i.e.
Equ. (4), can be used to accurately represent crack growth in D6ac steel
specimens subjected to complex variable amplitude load spectra.

3.1 Comparison with USAF fatigue crack growth under variable
amplitude loading

As part of the F-111 certification study the USAF [19] tested a number of surface
flawed D6AC plate specimens under block loading, where one block represented
200 flight hours, representing the mission spectrum for the critical location in the
F-111 wing pivot fitting. In this paper we focus on two specific specimens (P5I9
and P5I10) where both the initial and the final flaw shapes were very close to a
semi-circular surface flaw. The spectrum used in specimen test P5I9 represented a
tension-compression spectra whilst the spectrum used in specimen test P5I10
represented a tension-tension load spectra. The UASF specimens were 406.4 mm
long, 96.52 mm wide and 7.62 mm thick and contained a 2.921 mm semi-circular
surface flaw. The 7.62 mm thickness was representative of the critical location in
the Wing Pivot Fitting location, see [19].

Crack growth was computed using Equ. (4), assuming that the aspect ratio was
constant throughout the test. Here, as determined in Section 2, we used  = 2.6
and in both cases we set da/dBo to zero. For the tension compression tests we used
KC = 90 MPa m, which is approximately 30% greater than the static fracture
toughness measured in [19] for the material used in the tension-compression tests.
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The value of the remaining constant C
~

= 2.12 10-10 was found by matching the
time to grow from its initial size of 2.921 mm to approximately 3.099 mm in the
tension-compression tests. For the tension-tension tests the value of Kc was
increased by a factor of 1.10, which corresponds to the increase in the static
fracture toughness observed in [19] for the material used in the tension-tension

tests and the values of C
~

,  and da/dBo were kept as given above. These values
were then used to predict the entire crack length histories for both tests. A
comparison of the predicted and measured crack length histories is shown in
Figure 3. Here we see excellent agreement between the measured and computed
crack length histories.
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Figure 3 Comparison of measured and predicted crack length histories.
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4. CONCLUSION

This paper has confirmed the prior NASA finding that crack growth in D6ac steel
has little R ratio dependence and hence little, if any, crack closure. We also see
that the NASA data conforms to the Generalised Frost-Dugdale crack growth law.
We have then shown how the average block variant of the Generalised Frost-
Dugdale law can be used to compute the growth of small cracks in a USAF study
into crack growth in D6ac steel specimens under repeated block loading
representative of the critical region of F-111 wing pivot fitting.
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