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ABSTRACT

The solution for a crack progagating under shear loading (“Mode II”) in an isotropic viscoelastic

medium with different relaxation under volume and shear deformations is summarised. The medium

is infinite and the semi-infinite crack propagates along the x1-axis at constant speed V , which may

take any value up to the speed of dilatational waves. The problem is formulated for general loading

but the solution is developed for loading that follows the crack, inducing a dynamic steady state.

At the time of writing, the requisite Riemann–Hilbert problem has been solved and an expression

for the stress component σ12 directly ahead of the crack has been obtained. To leading order, the

stress has the same type of singularity as in the corresponding elastic problem but its strength is

altered by the viscoelasticity. Higher-order asymptotic representations for the field in the vicinity

of the crack (not just in its plane) are in the process of development; it is intended that explicit

numerical results, suitable for comparison with experimental observation, will be included in the

presentation.

1 INTRODUCTION

The motivation for this work comes from the recent laboratory demonstration (Rosakis
[1]) that shear cracks can be made to propagate faster than the speed of shear waves,
in polymeric materials with a weak plane. The presence of the weak plane is necessary to
encourage the crack to run straight rather than deviating towards the direction of maximum
tension. In the experiments, it is introduced artificially by bonding together two halves of
the specimen. Such planes occur naturally in the Earth’s crust and permit the shear faulting
associated with earthquakes, some of which have been observed to propagate intersonically
(Bouchon et al. [2]). The polymeric materials employed in the experiments display some
degree of viscoelastic relaxation: measurements of moduli obtained statically differ from
those obtained ultrasonically typically on the order of 10% (Rosakis [3]). There is thus some
direct incentive to study the viscoelastic problem, in addition to the fact that it provides at
least an example of the influence of a dissipative process on crack propagation.

The first solution for a crack propagating in a viscoelastic medium was given by Willis
[4], for the case of antiplane strain. Subsequent solutions have been produced for plane
strain (e.g. Walton [5] for steady-state subsonic propagation, Antipov and Willis [6] for a
case of transient intersonic propagation) but only for the case that the medium has the same
relaxation for volumetric or shear deformations. The present work is the first that treats the
more general case, together with all speeds up to the speed of high-frequency longitudinal
waves.



2 PROBLEM FORMULATION

The medium through which the crack propagates has constitutive relations

σij = κδijg1 ∗ dekk + 2µg2 ∗ de′ij , (1)

where the symbol ∗ denotes convolution with respect to time and e′ij = eij − (1/3)δijekk

is the deviatoric, or shear, strain. The relaxation functions g1(t), g2(t) are assumed to be
convex and monotone decreasing, with g1(0) = g2(0) = 1, and tending to positive finite
limits g1(∞), g2(∞) as t → ∞. The medium is assumed to be uniform and infinite and
to be loaded in some way that would generate, in the absence of the crack, a stress field
σA

ij(x1, x2, t). The presence of the crack which occupies, at time t, the surface

S(t) = {x : −∞ < x1 < V t, x2 = 0, −∞ < x3 < ∞}, (2)

induces additional stress, strain and displacement fields σij , eij , ui that satisfy the consti-
tutive relations (1), the equations of motion

σij,j = ρüi, (3)

where ρ is the mass density, together with the boundary conditions

σi2 → −σA
i2 as x2 → ±0, −∞ < x1 < V t (4)

and a radiation condition that this field is associated only with waves outgoing from the
crack. The condition of plane strain, u3 ≡ 0, is assumed.

The crack will be taken to be subject to pure Mode II loading; thus, only the “applied”
traction component σA

12 will differ from zero along the line of the crack (when x2 = 0).
Then, by symmetry, u2 and σ12 will be even functions of x2, while u1 and σ22 will be odd
functions of x2. Since it has to be continuous across the plane x2 =0 ahead of the crack,
u1(x1, 0, t) = 0 ahead of the crack but it will have a discontinuity, [u1](x1, t), across the
crack surface S(t). The stress component σ12 is continuous across the plane x2 = 0 for all
x1: it must be so ahead of the crack, and is ensured by the boundary conditions (4) across
the crack surface, because σA

12 is continuous. The stress component σ22 is zero on the whole
plane x2 = 0 because it is an odd function of x2, continuous across x2 = 0 ahead of the
crack, and from the boundary conditions (4) behind the crack, because σA

22 = 0 there.
A representation for the displacement field in the half-space x2 > 0 follows by relating

the displacement to the traction on the boundary x2 = 0, through the half-space Green’s
function Gij(x1 − x′

1, x2, x
′

2, t − t′):

ui(x1, x2, t) = −

∫ ∫
Gi1(x1 − x′

1, x2, 0, t − t′) ∗ σ12(x
′

1, 0, t′)dx′

1dt′. (5)

In the sequel, interest will centre on the values of u1 and σ12 as the surface x2 = 0 is
approached from the side x2 > 0. It is convenient, therefore, to streamline the notation
and write u(x1, t) for u1(x1,+0, t), σ(x1, t) for σ12(x1,+0, t) and G(x1, t) for G11(x1, 0, 0, t).
The representation (5) then gives, when x2 = 0,

u(x1, t) = −(G ∗ σ)(x1, t), (6)

the symbol ∗ now representing convolution over the relevant arguments x1, t.



Since the crack extends with speed V , it is helpful to introduce a moving coordinate

x = x1 − V t (7)

and to express the fields u, σ and G as functions of (x, t). Thus, for example, u(x1, t) =
u(x + V t, t) =: û(x, t), and it is easy to check that equation (6) implies

û(x, t) = −(Ĝ ∗ σ̂)(x, t), (8)

the convolution being with respect to the relevant arguments x, t.
The function û is zero for x > 0; it is helpful to recognise this by appending a subscript

so that it becomes û−. Then, similarly, decompose σ̂:

σ̂ = σ̂+ + σ̂−, (9)

where σ̂+ is the restriction of σ̂ to the half-line x > 0 and is unknown, whereas σ̂− is the
corresponding restriction to x < 0 and is known, from the boundary condition (4).

The next step is to take the two-sided Laplace transform of equation (8), to give

û− = −Ĝ[σ̂+ + σ̂−], (10)

where the transform of a function f(x, t) is defined so that

f(ζ, p) =

∫ ∫
e−(ζx+pt)f(x, t) dx dt.

Thus, the transforms û−(ζ, p), σ̂−(ζ, p) are analytic for Re(p) > 0 (for causality), and in the
half-plane Re(ζ) < 0, whereas σ̂+(ζ, p) is analytic in the half-plane Re(ζ) > 0. In contrast,

Ĝ is defined, still for Re(p) > 0 but only on the imaginary axis (L) in the complex ζ-plane.
There is a minor complication that the domain to the left of the contour is usually called
the positive side, and that to the right the negative side. With this in mind, the following
definitions are made:

F+(ζ, p) = ζû−, F−(ζ, p) = σ̂+, P+(ζ, p) = σ̂−, K(ξ, p = −ζĜ. (11)

The relation (8) now yields the Riemann–Hilbert problem

F+(ζ, p) = K(ζ, p)F−(ζ, p) + K(ζ, p)P+(ζ, p), ζ ∈ L, (12)

relating the boundary values, as ζ approaches L from their respective domains of analyticity,
of the functions F+ and F−. The reason for defining F+ and K in the way given is to ensure
that K remains bounded as |ζ| → ∞. The functions F+ and F− are of the same order as
|ζ| → ∞ because the former is related to a strain and the latter to a stress.

The basic need, at this stage, is to obtain explicitly the transform Ĝ. This can be
accomplished immediately by noting that

Ĝ(ζ, p) = G(ζ, p − V ζ), (13)

where

G(ζ, p) =

∫ ∫
e−(ζx1+pt)G(x1, t) dx1 dt. (14)



The transform G(ζ, p) is exactly like the corresponding transform of the elastic Green’s
function, except that the elastic wave speeds a, b of dilatational and shear waves are replaced
by their viscoelastic counterparts which are given by

a2(p) = p[κg1(p) + (4/3)µg2(p)]/ρ, b2(p) = pµg2(p)/ρ. (15)

Substitution into (11) simply requires the replacement of p by p − V ζ.
Explicitly, the function G is:

G(ζ, p) =
(p2/b2)β

ρb2[4ζ2αβ + (β2 − ζ2)2]
, (16)

where
α = (p2/a2 − ζ2)1/2, β = (p2/b2 − ζ2)1/2. (17)

The branches of the square roots must be chosen so that Re(α) > 0 and Re(β) > 0 for all
ζ ∈ L (Re(p) > 0), to ensure boundedness of the Green’s function as x2 → ∞.

3 SOLUTION FOR STEADY-STATE LOADING

The limiting case of steady-state loading is obtained from the general transient case by
multiplying by a factor p and then letting p → +0. The relation (12) remains valid, except
that the participating functions depend only on ζ; recall, however, that K(ζ) is obtained by

first replacing p in Ĝ by p − V ζ before letting p → +0.
The method for solving the Riemann–Hilbert problem (12) is the usual one, which re-

quires first solving the corresponding homogeneous problem, whose solution can be expressed
in the form

K+(ζ) = K(ζ)/K−(ζ), ζ ∈ L. (18)

The precise nature of the factorisation implied in (18) depends on the discontinuities of
K(ζ) on L. K(ζ) is always discontinuous at infinity, and it can be discontinuous at ζ = 0.
However, once the factorisation is accomplished, relation (12) can be given in the form

F+/K+ − F−K− = P+K−, ζ ∈ L, (19)

which has solution

F+(z) = K+(z)φ(z), Re(z) < 0,

F−(z) = {K−(z)}−1φ(z), Re(z) > 0, (20)

where

φ(z) =
1

2πi

∫
L

P+(ζ)K−(ζ)

ζ − z
dζ. (21)

The function F−, suitably normalized, is the transform of a “weight function” that
delivers the magnitude of the singularity in the stress near the crack tip. The order of
the singularity follows directly from the second of equations (20), by use of the Tauberian
theorem that relates the singularity at x = 0 to the behaviour of the transform as |z| → ∞.
If K− is normalized so that

K−(z) ∼
1

Γ(1 − q)
z−q as |z| → ∞, (22)



then use of Plancherel’s theorem, together with the Tauberian theorem, gives

σ̂ ∼ kx−q as x → 0, (23)

where

k = −
1

2πi

∫
L

P+(ζ)K−(ζ )dζ =

∫ 0

−∞

σA
12(x)W (−x) dx, (24)

having written W (x) for the inverse transform of F− and σA
12 as a function of x = x1 − V t.

The asymptotic behaviour of F− thus carries easily-accessible physical information. A weight
function for subsonic viscoelastic propagation was introduced in this way by Walton [5]; for
a much more general development (explicitly for elastic material but it applies equally in
the viscoelastic context), see Willis and Movchan [7], Obrezanova and Willis [8].

4 IMPLICATIONS

The structure of the Riemann–Hilbert problem (12), and the associated homogeneous
problem (19), depends on what discontinuities may be displayed by K(ζ) for ζ ∈ L. There
is always a discontinuity at ζ = (±)i∞, and there may be a discontinuity at ζ = 0. Their
presence, and form, depend on the speed V . It is helpful to introduce notation for the
limiting wave speeds. Let

a0 = [(κ + 4µ/3)/ρ]1/2, b2
0 = [µ/ρ]1/2 (25)

be the “elastic” wave speeds, associated with high-frequency disturbances (p → ∞), and
let c0 be the corresponding Rayleigh wave speed, associated with p/ζ giving a zero in the
denominator of (16) in the limit p → ∞. Let

a∞ = {[κg1(∞) + 4µg2(∞)/3]/ρ}1/2, b∞ = [µg2(∞)/ρ]1/2 (26)

be the “low-frequency” wave speeds (p → 0), with associated low-frequency Rayleigh wave
speed c∞. First, if V < b∞,

K(ζ) ∼ ∓iA0 as ζ → ±i∞, (27)

where

A0 =
(V 2/b2

0)(1 − V 2/b2
0)

1/2

ρb2
0[(2 − V 2/b2

0)
2 − 4(1 − V 2/a2

0)
1/2(1 − V 2/b2

0)
1/2]

, (28)

while
K(ζ) ∼ ∓iA∞ as ζ → ±0i, (29)

where A∞ is defined like A0 but with the low-frequency wave speeds a∞, b∞ replacing a0,
b0. If V < c∞, it is appropriate to define K0(ζ) so that

K(ζ) = iA0(ζ + 0)1/2(ζ − 0)−1/2K0(ζ). (30)

It follows that K0(ζ) is continuous on L and tends to 1 as ζ → ±i∞. No further detail can
be given but it is now possible to factorise K0 into a product K+

0 K−

0 , and then

K−(ζ) = 21/2(ζ − 0)−1/2K−

0 (ζ). (31)



(The normalization is chosen here to deliver the usual Mode II stress intensity factor rather
than the parameter k.) At least when g1 = g2, it is easy to prove that K−

0 (ζ) ≡ 1 (Walton
[5]). In that case, the weight function is independent of the viscoelastic response and the
crack velocity, so the stress directly ahead of the crack is exactly the same as for elastostatics.
This may be true generally but all that can be claimed for now is that the weight function
W (x) decays like x−1/2, just as for elasticity, as x → ∞.

The situation is different as soon as V exceeds c∞, for then A0 and A∞ have opposite
signs and K(ζ) has to be broken down differently than in (30). Full details for this, and
all other speed ranges, are given in (Antipov and Willis [9]). Here, just two remarks are
made. The weight function W (x) has exponential decay as x → ∞, when a∞ < V . This
can happen in the subsonic range, if a∞ < c0. The exponent q of the singularity is always
the same as for the corresponding elastic problem, and depends on V when b0 < V < a0.
In the intersonic range, the weight function W (x) has algebraic decay as x → ∞ if there is
a speed range b0 < V < a∞ but it displays exponential decay when a∞ < V < a0.

The conference presentation will include even less than this summary about the method
of solution but will give more detail about the solution itself, including its form off the line
of the crack, which is in the process of study at the time of writing.
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